Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bioact Compat Polym ; 37(3): 220-230, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37465414

RESUMO

Aim: Grape seed extract contains a complex mixture of proanthocyanidins (PACs), a plant biopolymer used as a biomaterial to improve reparative and preventive dental therapies. Co-polymerization of PACs with type I collagen mechanically reinforces the dentin extracellular matrix. This study assessed the biocompatibility of PACs from grape seed extract on dental pulp stem cells (DPSCs) in a model simulating leaching through dentin to the pulp cavity. The aim was to determine the type of PACs (galloylated vs. non-galloylated) within grape seed extract that are most compatible with dental pulp tissue. Methodology: Human demineralized dentin was treated with selectively-enriched dimeric PACs prepared from grape seed extract using liquid-liquid chromatography. DPSCs were cultured within a 2D matrix and exposed to PAC-treated dentin extracellular matrix. Cell proliferation was measured using the MTS assay and expression of odontoblastic genes was analyzed by qRT-PCR. Categorization of PACs leaching from dentin was performed using HPLC-MS. Results: Enriched dimeric fractions containing galloylated PACs increased the expression of certain odontoblastic genes in DPSCs, including Runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP2), basic fibroblast growth factor (FGF2), dentin sialophosphoprotein (DSPP) and collagen, type I, alpha 1 (COLI). Galloylated dimeric PACs also exhibited minor effects on DPSC proliferation, resulting in a decrease compared to control after five days of treatment. The non-galloylated dimer fraction had no effect on these genes or on DPSC proliferation. Conclusions: Galloylated PACs are biocompatible with DPSCs and may exert a beneficial effect on cells within dental pulp tissue. The observed increase in odontoblastic genes induced by galloylated PACs together with a decrease in DPSC proliferation is suggestive of a shift toward cell differentiation. This data supports the use of dimeric PACs as a safe biomaterial, with galloylated dimeric PACs exhibiting potential benefits to odontoblasts supporting dentin regeneration.

2.
Anal Chem ; 93(36): 12162-12169, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34473490

RESUMO

The goal of the qNMR Summit is to take stock of the status quo and the recent developments in qNMR research and applications in a timely and accurate manner. It provides a platform for both advanced and novice qNMR practitioners to receive a well-rounded update and discuss potential qNMR-related applications and collaborations. For over a decade, scientists from academia, industry, nonprofit institutions, and governmental bodies have focused on the standardization of qNMR methodology, as well as its metrological and pharmacopeial utility. This paper reviews key content of qNMR Summits 1.0 to 4.0 and puts into perspective the outcomes and available transcripts of the October 2019 Summit 5.0, with attendees from the United States, Canada, Japan, Korea, and several European countries. Summit presentations focused on qNMR methodology in the pharmaceutical industry, advanced quantitation algorithms, and promising developments.


Assuntos
Tecnologia , Canadá , Japão , Padrões de Referência , Estados Unidos
3.
J Nat Prod ; 83(11): 3287-3297, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151073

RESUMO

The present study elucidated the structures of three A-type tri- and tetrameric proanthocyanidins (PACs) isolated from Cinnamomum verum bark to the level of absolute configuration and determined their dental bioactivity using two therapeutically relevant bioassays. After selecting a PAC oligomer fraction via a biologically diverse bioassay-guided process, in tandem with centrifugal partition chromatography, phytochemical studies led to the isolation of PAC oligomers that represent the main bioactive principles of C. verum: two A-type tetrameric PACs, epicatechin-(2ß→O→7,4ß→8)-epicatechin-(4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (1) and parameritannin A1 (2), together with a trimer, cinnamtannin B1 (3). Structure determination of the underivatized proanthocyanidins utilized a combination of HRESIMS, ECD, 1D/2D NMR, and 1H iterative full spin analysis data and led to NMR-based evidence for the deduction of absolute configuration in constituent catechin and epicatechin monomeric units.


Assuntos
Cinnamomum zeylanicum/química , Serviços de Saúde Bucal , Casca de Planta/química , Polímeros/química , Proantocianidinas/química , Humanos , Estrutura Molecular , Análise Espectral/métodos
4.
Dent Mater ; 36(12): 1536-1543, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33129510

RESUMO

OBJECTIVES: To develop a protocol for assessment of the bulk viscoelastic behavior of dentin extracellular matrix (ECM), and to assess relationships between induced collagen cross-linking and viscoelasticity of the dentin ECM. METHODS: Dentin ECM was treated with agents to induce exogenous collagen cross-linking: proanthocyanidins (PACs) from Vitis vinifera - VVe, PACs from Pinus massoniana - PMe, glutaraldehyde - (GA), or kept untreated (control). A dynamic mechanical strain sweep method was carried out in a 3-point bending submersion clamp at treatment; after protein destabilization with 4 M urea and after 7-day, 6-month, and 12-month incubation in simulated body fluid. Tan δ, storage (E'), loss (E"), and complex moduli (E*) were calculated and data were statistically analyzed using two-way ANOVA and post-hoc tests (α = 0.05). Chemical analysis of dentin ECM before and after protein destabilization was assessed with ATR-FTIR spectroscopy. RESULTS: Significant interactions between study factors (treatment vs. time points, p < 0.001) were found for all viscoelastic parameters. Despite a significant decrease in all moduli after destabilization, PAC-treated dentin remained statistically higher than control (p < 0.001), indicating permanent mechanical enhancement after biomodification. Covalently crosslinked, GA-treated dentin was unaffected by destabilization (p = 0.873) and showed the lowest damping capacity (tan δ) at all time points (p < 0.001). After 12 months, the damping capacity of PMe and VVe groups decreased significantly. Changes in all amide IR resonances revealed a partial chemical reversal of PAC-mediated biomodification. SIGNIFICANCE: Viscoelastic measurements and IR spectroscopy aid in elucidating the role of inter-molecular collagen cross-linking in the mechanical behavior of dentin ECM.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Colágeno , Dentina , Matriz Extracelular , Proantocianidinas/farmacologia
5.
J Org Chem ; 85(13): 8462-8479, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32551610

RESUMO

Guided by dentin biomechanical bioactivity, this phytochemical study led to the elucidation of an extended set of structurally demanding proanthocyanidins (PACs). Unambiguous structure determination involved detailed spectroscopic and chemical characterization of four A-type dimers (2 and 4-6), seven trimers (10-16), and six tetramers (17-22). New outcomes confirm the feasibility of determining the absolute configuration of the catechol monomers in oligomeric PACs by one-dimensional (1D) and two-dimensional (2D) NMR. Electronic circular dichroism as well as phloroglucinolysis followed by mass spectrometry and chiral phase high-performance liquid chromatography (HPLC) analysis generated the necessary chiral reference data. In the context of previously reported dentin-bioactive PACs, accurately and precisely assigned 13C NMR resonances enabled absolute stereochemical assignments of PAC monomers via (i) inclusion of the 13C NMR γ-gauche effect and (ii) determination of differential 13C chemical shift values (ΔδC) in comparison with those of the terminal monomer (unit II) in the dimers 2 and 4-6. Among the 13 fully elucidated PACs, eight were identified as new, and one structure (11) was revised based on new knowledge gained regarding the subtle, stereospecific spectroscopic properties of PACs.


Assuntos
Pinus , Proantocianidinas , Cromatografia Líquida de Alta Pressão , Dentina , Espectrometria de Massas
6.
J Dent ; 99: 103354, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360320

RESUMO

OBJECTIVES: Proanthocyanidins (PACs) are biocompounds mimicking native collagen cross-links. The effective and practical delivery of any biocompound is pivotal for clinical usage. The aim was to investigate the dentin biomodification and effective formation of dentin-resin biointerfaces of two highly bioactive PAC-rich extracts, Vitis vinifera (Vv) and Camellia sinensis (Cs), delivered using neutral (NP) or acidic (AP) rinse-out primer approaches. METHODS: The depth of dentin demineralization (optical profilometry), dentin biomodification (apparent modulus of elasticity, collagen auto-fluorescence) and properties of dentin-resin interfaces (microtensile bond strength - µTBS, and micro-permeability) were investigated. NP consisted of either 15% Vv or Cs applied for 60 s after surface etching; while AP contained 15% Vv or Cs in either 35% glycolic acid or tartaric acid applied for 30 s or 60 s. Data were analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS: The depth of demineralization was statistically higher when applied for 60 s, regardless of rinse-out primer approach (p < 0.001). Compared to the AP strategy, NP exhibited statistically higher apparent modulus of elasticity, regardless of PAC extract (p < 0.001). Highest µTBS were obtained for NPVv, which were statistically similar to APGAVv, when applied for 60 s (p < 0.001); both resulted in a dramatic decrease of the interfacial permeability. NPCs group showed the lowest µTBS (p < 0.001). CONCLUSIONS: A combination of high bond strength and low micro-permeability can be accomplished using glycolic acid with the mid- and high-PAC oligomer enriched extract (Vv). Cs extract containing mostly catechins and dimeric PACs, was found unsuitable for resin-dentin adhesion despite exhibiting high initial dentin biomodification. CLINICAL SIGNIFICANCE: This study provides a new conceptual delivery of PAC-mediated dentin biomodification and conservative dentin surface etching using rinse-out primers. The strategy requires a specific combination of PAC source, α-hydroxy acid, and application time.


Assuntos
Catequina , Colagem Dentária , Proantocianidinas , Catequina/farmacologia , Colágeno , Dentina , Adesivos Dentinários , Teste de Materiais , Proantocianidinas/farmacologia , Cimentos de Resina , Propriedades de Superfície , Resistência à Tração
7.
J Nat Prod ; 82(9): 2387-2399, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31433178

RESUMO

Aimed at exploring the dentin biomodification potential of proanthocyanidins (PACs) for the development of dental biomaterials, this study reports the phytochemical and dental evaluation of nine B-type PACs from grape seed extract (GSE). Out of seven isolated dimers (1-7), four new compounds (2, 3, 5, and 6) involved relatively rare ent-catechin or ent-epicatechin monomeric flavan-3-ol units. Low-temperature NMR analyses conducted along with phloroglucinolysis and electronic circular dichroism enabled unequivocal structural characterization and stereochemical assignment. Additionally, one known (8) and one new (9) B-type trimer were characterized. Differential 13C NMR chemical shifts (Δδ) were used to determine the absolute configuration of 9, relative to the dimers 1 and 2 as the possible constituent subunits. Compared to the dimers, the trimers showed superior dentin biomodification properties. The dimers, 1-7, exhibited pronounced differences in their collagenase inhibitory activity, while enhancing dentin stiffness comparably. This suggests that PAC structural features such as the degree of polymerization, relative and absolute configuration have a differential influence on enhancement of dentin biomechanical and biostability. As mechanical enhancement to dentin and resistance to proteolytic biodegradation are both essential properties functional and stable dentin substrate, the structurally closely related PACs suggest a new metric, the dentin biomodification potential (DBMP) that may rationalize both properties.


Assuntos
Biopolímeros/química , Biotina/química , Proantocianidinas/química
8.
ACS Infect Dis ; 5(6): 829-840, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30990022

RESUMO

Addressing the urgent need to develop novel drugs against drug-resistant Mycobacterium tuberculosis ( M. tb) strains, ecumicin (ECU) and rufomycin I (RUFI) are being explored as promising new leads targeting cellular proteostasis via the caseinolytic protein ClpC1. Details of the binding topology and chemical mode of (inter)action of these cyclopeptides help drive further development of novel potency-optimized entities as tuberculosis drugs. ClpC1 M. tb protein constructs with mutations driving resistance to ECU and RUFI show reduced binding affinity by surface plasmon resonance (SPR). Despite certain structural similarities, ECU and RUFI resistant mutation sites did not overlap in their SPR binding patterns. SPR competition experiments show ECU prevents RUFI binding, whereas RUFI partially inhibits ECU binding. The X-ray structure of the ClpC1-NTD-RUFI complex reveals distinct differences compared to the previously reported ClpC1-NTD-cyclomarin A structure. Surprisingly, the complex structure revealed that the epoxide moiety of RUFI opened and covalently bound to ClpC1-NTD via the sulfur atom of Met1. Furthermore, RUFI analogues indicate that the epoxy group of RUFI is critical for binding and bactericidal activity. The outcomes demonstrate the significance of ClpC1 as a novel target and the importance of SAR analysis of identified macrocyclic peptides for drug discovery.


Assuntos
Antituberculosos/química , Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oligopeptídeos/química , Antituberculosos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Ligantes , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Oligopeptídeos/farmacologia , Domínios Proteicos
9.
Dent Mater ; 35(2): 328-334, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580969

RESUMO

OBJECTIVES: The interactivity of proanthocyanidins (PACs) with collagen modulates dentin matrix biomechanics and biostability. Herein, PAC extracts selected based on structural diversity were investigated to determine key PAC features driving sustained effects on dentin matrices over a period of 18months. METHODS: The chemical profiles of PAC-rich plant sources, Pinus massoniana (PM), Cinnamomum verum (CV) and Hamamelis virginiana (HV) barks, as well as Vitis vinifera (VV) seeds, were obtained by diol HPLC analysis after partitioning of the extracts between methyl acetate and water. Dentin matrices (n=15) were prepared from human molars to determine the apparent modulus of elasticity over 18months of aging. Susceptibility of the dentin matrix to degradation by endogenous and exogenous proteases was determined by presence of solubilized collagen in supernatant, and resistance to degradation by bacterial collagenase, respectively. Data were analyzed using ANOVA and Games-Howell post hoc tests (α=0.05). RESULTS: After 18months, dentin matrices modified by PM and CV extracts, containing only non-galloylated PACs, were highly stable mechanically (p<0.05). Dentin matrices treated with CV exhibited the lowest degradation by bacterial collagenase after 1h and 18months of aging (p<0.05), while dentin matrices treated with PM showed the least mass loss and collagen solubilization by endogenous enzymes over time (p<0.05). SIGNIFICANCE: Resistance against long-term degradation was observed for all experimental groups; however, the most potent and long-lasting dentin biomodification resulted from non-galloylated PACs.


Assuntos
Proantocianidinas , Cromatografia Líquida de Alta Pressão , Colágeno , Colagenases , Dentina , Humanos
10.
J Chromatogr A ; 1535: 55-62, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331224

RESUMO

Proanthocyanidins (PACs) find wide applications for human use including food, cosmetics, dietary supplements, and pharmaceuticals. The chemical complexity associated with PACs has triggered the development of various chromatographic techniques, with countercurrent separation (CCS) gaining in popularity. This study applied the recently developed DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) approach for the selective enrichment of trimeric and tetrameric PACs using centrifugal partition chromatography (CPC). This CPC method aims at developing PAC based biomaterials, particularly for their application in restoring and repairing dental hard tissue. A general separation scheme beginning with the depletion of polymeric PACs, followed by the removal of monomeric flavan-3-ols and a final enrichment step produced PAC trimer and tetramer enriched fractions. A successful application of this separation scheme is demonstrated for four polyphenol rich plant sources: grape seeds, pine bark, cinnamon bark, and cocoa seeds. Minor modifications to the generic DESIGNER CCS method were sufficient to accommodate the varying chemical complexities of the individual source materials. The step-wise enrichment of PAC trimers and tetramers was monitored using normal phase TLC and Diol-HPLC-UV analyses. CPC proved to be a reliable tool for the selective enrichment of medium size oligomeric PACs (OPACs). This method plays a key role in the development of dental biomaterials considering its reliability and reproducibility, as well as its scale-up capabilities for possible larger-scale manufacturing.


Assuntos
Materiais Biocompatíveis/síntese química , Cromatografia Líquida , Proantocianidinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Proantocianidinas/química , Reprodutibilidade dos Testes
11.
J Nat Prod ; 80(3): 634-647, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28067513

RESUMO

Chemical standardization, along with morphological and DNA analysis ensures the authenticity and advances the integrity evaluation of botanical preparations. Achievement of a more comprehensive, metabolomic standardization requires simultaneous quantitation of multiple marker compounds. Employing quantitative 1H NMR (qHNMR), this study determined the total isoflavone content (TIfCo; 34.5-36.5% w/w) via multimarker standardization and assessed the stability of a 10-year-old isoflavone-enriched red clover extract (RCE). Eleven markers (nine isoflavones, two flavonols) were targeted simultaneously, and outcomes were compared with LC-based standardization. Two advanced quantitative measures in qHNMR were applied to derive quantities from complex and/or overlapping resonances: a quantum mechanical (QM) method (QM-qHNMR) that employs 1H iterative full spin analysis, and a non-QM method that uses linear peak fitting algorithms (PF-qHNMR). A 10 min UHPLC-UV method provided auxiliary orthogonal quantitation. This is the first systematic evaluation of QM and non-QM deconvolution as qHNMR quantitation measures. It demonstrates that QM-qHNMR can account successfully for the complexity of 1H NMR spectra of individual analytes and how QM-qHNMR can be built for mixtures such as botanical extracts. The contents of the main bioactive markers were in good agreement with earlier HPLC-UV results, demonstrating the chemical stability of the RCE. QM-qHNMR advances chemical standardization by its inherent QM accuracy and the use of universal calibrants, avoiding the impractical need for identical reference materials.


Assuntos
Isoflavonas/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Trifolium/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Padrões de Referência
12.
J Org Chem ; 82(3): 1316-1329, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28098463

RESUMO

The structurally complex oligomeric proanthocyanidins (OPACs) are promising biomimetic agents, capable of strengthening the macromolecular backbone of teeth via intermolecular and intermicrofibrillar cross-linking. This study establishes analytical methods capable of determining the absolute configuration of the catechin-type monomeric units of underivatized OPACs. This preserves the capacity of their biological evaluation, aimed at understanding the inevitably stereospecific interactions between the OPACs and dentin collagen. Guided by dental bioassays (modulus of elasticity, long-term stability), two new trimeric and tetrameric A-type OPACs were discovered as dentin biomodifiers from pine (Pinus massoniana) bark: epicatechin-(2ß→O→7,4ß→8)-epicatechin-(2ß→O→7,4ß→8)-catechin (5) and epicatechin-(2ß→O→7,4ß→8)-epicatechin-(2ß→O→7,4ß→6)-epicatechin-(2ß→O→7,4ß→8)-catechin (6), respectively. Combining 1D/2D NMR, HRESIMS, ECD, 1H iterative full spin analysis (HiFSA), and gauge-invariant atomic orbital (GIAO) δ calculations, we demonstrate how 13C NMR chemical shifts (diastereomeric building blocks (A-type dimers)) empower the determination of the absolute configuration of monomeric units in the higher oligomers 5 and 6. Collectively, NMR with ECD reference data elevates the level of structural information achievable for these structurally demanding molecules when degradation analysis is to be avoided. Considering their numerous and deceptively subtle, but 3D impactful, structural variations, this advances the probing of OPAC chemical spaces for species that bind selectively to collagenous and potentially other biologically important biomacromolecules.


Assuntos
Dentina/química , Pinus/química , Proantocianidinas/química , Dentina/metabolismo , Humanos , Conformação Molecular
13.
Chem Res Toxicol ; 29(7): 1142-50, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27269377

RESUMO

Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to multiple chemical markers for both safety and desired bioactivity.


Assuntos
Citocromo P-450 CYP1A1/biossíntese , Estrogênios/metabolismo , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Feminino , Humanos , Humulus/química , Hidroxilação , RNA Mensageiro/genética
14.
HerbalGram ; 109: 60-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30287984

RESUMO

The concept of botanical integrity (BI), introduced previously in HerbalGram issue 106, involves the determination of identity, homogeneity, bioactivity, and safety of plant-derived materials designated for human consumption.1 It goes beyond previously established quality control principles. The inaugural article in this series described the three major domains of expertise that are required to assess BI (as noted in Figure 1): botanical examination (botany), phytochemical analysis (chemistry), and biological efficacy and safety assessments (bioactivity, which encompasses the fields of pharmacology and toxicology).

15.
J Org Chem ; 80(15): 7495-507, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26214362

RESUMO

The ability of certain oligomeric proanthocyanidins (OPACs) to enhance the biomechanical properties of dentin involves collagen cross-linking of the 1.3-4.5 nm wide space via protein-polyphenol interactions. A systematic interdisciplinary search for the bioactive principles of pine bark has yielded the trimeric PAC, ent-epicatechin-(4ß→8)-epicatechin-(2ß→O→7,4ß→8)-catechin (3), representing the hitherto most potent single chemical entity capable of enhancing dentin stiffness. Building the case from two congeneric PAC dimers, a detailed structural analysis decoded the stereochemistry, spatial arrangement, and chemical properties of three dentin biomodifiers. Quantum-mechanics-driven (1)H iterative full spin analysis (QM-HiFSA) of NMR spectra distinguished previously unrecognized details such as higher order J coupling and provided valuable information about 3D structure. Detection and quantification of H/D-exchange effects by QM-HiFSA identified C-8 and C-6 as (re)active sites, explain preferences in biosynthetic linkage, and suggest their involvement in dentin cross-linking activity. Mapping of these molecular properties underscored the significance of high δ precision in both (1)H and (13)C NMR spectroscopy. Occurring at low- to subppb levels, these newly characterized chemical shift differences in ppb are small but diagnostic measures of dynamic processes inherent to the OPAC pharmacophores and can help augment our understanding of nanometer-scale intermolecular interactions in biomodified dentin macromolecules.


Assuntos
Catequina/química , Dentina/química , Substâncias Macromoleculares/química , Polifenóis/química , Proantocianidinas/química , Fenômenos Bioquímicos , Espectroscopia de Ressonância Magnética , Estereoisomerismo
16.
HerbalGram ; 106: 58-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-30287983

RESUMO

Raw materials, ingredients, and products derived from plants are commonly referred to as herbs or botanicals in both the biomedical literature and the natural products health industry. This overarching term includes the breadth of crude herbs, plant parts, and the ingredients made from them, and also covers finished products such as botanical dietary supplements. Botanical dietary supplements are intended to supplement the human diet and are composed primarily of powdered plant parts, their extracts, or other preparations derived from crude herbal material; some formulations include other ingredients such as vitamins, minerals, and amino acids. Botanical dietary supplements are highly complex mixtures reflecting the diverse chemical constituents that comprise the source plant's raw material. Botanical analysis is an intricate analytical challenge requiring specialized skills and instrumentation that is different from those required for quality control of chemically simpler pharmaceuticals, or for the safety assessment of many conventional food or other products that are generally regarded as safe (GRAS).

17.
Fitoterapia ; 101: 169-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542682

RESUMO

Grape seeds are a rich source of polyphenols, especially proanthocyanidins (PACs), and are also known for the presence of galloylated oligomeric PACs (OPACs). The present study focuses on the phytochemical methodology for grape seed (O)PACs and their potential role as dentin biomodifiers to be used in restorative and reparative dentistry. A new method using centrifugal partition chromatography (CPC) was developed for the preparative separation of the grape seed (O)PACs. Orthogonal phytochemical profiling of the resulting CPC fractions was performed using C18 and diol HPLC, normal phase HPTLC, and IT-TOF MS analysis. A galloylated procyanidin dimer (1) was isolated from a CPC fraction in order to evaluate its potential to enhance dentin bio-mechanical properties. Moreover, it helped to evaluate the impact of the galloyl moiety on the observed bioactivity. Structure elucidation was performed using ESI-MS, 1D and 2D NMR analyses. For the first time, (1)H iterative full spin analysis (HiFSA) was performed on this type of molecule, enabling a detailed proton chemical shift and coupling constant assignment. The CPC fractions as well as 1 showed promising results in the dentin stiffness bioassay and indicate that they may be used as dental intervention biomaterial.


Assuntos
Dentina/química , Proantocianidinas/química , Sementes/química , Vitis/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Proantocianidinas/isolamento & purificação
18.
Langmuir ; 30(49): 14887-93, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25379878

RESUMO

Proanthocyanidins (PACs) are secondary plant metabolites that mediate nonenzymatic collagen cross-linking and enhance the properties of collagen based tissue, such as dentin. The extent and nature of cross-linking is influenced by the composition and specific chemical structure of the bioactive compounds present in certain PAC-rich extracts. This study investigated the effect of the molecular weight and stereochemistry of polyphenol compounds on two important properties of dentin, biomechanics, and biostability. For that, purified phenols, a phenolic acid, and some of its derivatives were selected: PAC dimers (A1, A2, B1, and B2) and a trimer (C1), gallic acid (Ga), its esters methyl-gallate (MGa) and propyl-gallate (PGa), and a pentagalloyl ester of glucose (PGG). Synergism was assessed by combining the most active PAC and gallic acid derivative. Mechanical properties of dentin organic matrix were determined by the modulus of elasticity obtained in a flexural test. Biostability was evaluated by the resistance to collagenase degradation. PACs significantly enhanced dentin mechanical properties and decreased collagen digestion. Among the gallic acid derivatives, only PGG had a significant enhancing effect. The lack of observed C1:PGG synergy indicates that both compounds have similar mechanisms of interaction with the dentin matrix. These findings reveal that the molecular weight of polyphenols have a determinant effect on their interaction with type I collagen and modulates the mechanism of cross-linking at the molecular, intermolecular, and inter-microfibrillar levels.


Assuntos
Colágeno/química , Dentina/química , Hidroxibenzoatos/química , Fenóis/química , Plantas/química , Reagentes de Ligações Cruzadas/química , Estabilidade de Medicamentos , Estrutura Molecular , Peso Molecular , Estereoisomerismo
19.
Acta Biomater ; 10(7): 3288-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721612

RESUMO

Proanthocyanidin-rich plant-derived agents have been shown to enhance dentin biomechanical properties and resistance to collagenase degradation. This study systematically investigated the interaction of chemically well-defined monomeric catechins with dentin extracellular matrix components by evaluating dentin mechanical properties as well as activities of matrix metalloproteinases (MMPs) and cysteine-cathepsins (CTs). Demineralized dentin beams (n=15) were incubated for 1h with 0.65% (+)-catechin (C), (-)-catechin gallate (CG), (-)-gallocatechin gallate (GCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG). The modulus of elasticity (E) and the fold increase in E were determined by comparing specimens at baseline and after treatment. Biodegradation rates were assessed by differences in percentage of dry mass before and after incubation with bacterial collagenase. The inhibition of MMP-9 and CT-B by 0.65, 0.065 and 0.0065% of each catechin was determined using fluorimetric proteolytic assay kits. All monomeric catechins led to a significant increase in E. EGCG showed the highest fold increase in E, followed by ECG, CG and GCG. EGCG, ECG, GCG and CG significantly lowered biodegradation rates and inhibited both MMP-9 and CT-B at a concentration of 0.65%. Overall, the 3-O-galloylated monomeric catechins are clearly more potent than their non-galloylated analogues in improving dentin mechanical properties, stabilizing collagen against proteolytic degradation, and inhibiting the activity of MMPs and CTs. The results indicate that galloylation is a key pharmacophore in the monomeric and likely also in the oligomeric proanthocyanidins that exhibit high cross-linking potential for dentin extracellular matrix.


Assuntos
Catequina/metabolismo , Dentina/metabolismo , Ácido Gálico/metabolismo , Plantas/metabolismo , Catequina/análogos & derivados , Ácido Gálico/química , Humanos
20.
Dent Mater ; 30(1): 62-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24309436

RESUMO

OBJECTIVES: The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. METHODS: The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. RESULTS: Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. SIGNIFICANCE: Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management.


Assuntos
Dentina/metabolismo , Dentina/química , Matriz Extracelular/metabolismo , Humanos , Proantocianidinas/química , Proantocianidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...