Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 115(2): 843-50, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655826

RESUMO

Experimental evidence shows that neurotransmitter release, from presynaptic terminals, can be regulated by altering transmitter load per synaptic vesicle (SV) and/or through change in the probability of vesicle release. The vesicular acetylcholine transporter (VAChT) loads acetylcholine into SVs at cholinergic synapses. We investigated how the VAChT affects SV content and release frequency at central synapses in Drosophila melanogaster by using an insecticidal compound, 5Cl-CASPP, to block VAChT and by transgenic overexpression of VAChT in cholinergic interneurons. Decreasing VAChT activity produces a decrease in spontaneous SV release with no change to quantal size and no decrease in the number of vesicles at the active zone. This suggests that many vesicles are lacking in neurotransmitter. Overexpression of VAChT leads to increased frequency of SV release, but again with no change in quantal size or vesicle number. This indicates that loading of central cholinergic SVs obeys the "set-point" model, rather than the "steady-state" model that better describes loading at the vertebrate neuromuscular junction. However, we show that expression of a VAChT polymorphism lacking one glutamine residue in a COOH-terminal polyQ domain leads to increased spontaneous SV release and increased quantal size. This effect spotlights the poly-glutamine domain as potentially being important for sensing the level of neurotransmitter in cholinergic SVs.


Assuntos
Neurônios Colinérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Exocitose , Interneurônios/metabolismo , Interneurônios/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Mutação , Sinapses/metabolismo , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética
2.
J Biomed Opt ; 20(1): 016012, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25588163

RESUMO

We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.


Assuntos
Processamento de Imagem Assistida por Computador/instrumentação , Microscopia Confocal/instrumentação , Tomografia de Coerência Óptica/instrumentação , Animais , Drosophila/anatomia & histologia , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Larva/anatomia & histologia , Microscopia Confocal/métodos , Polegar/anatomia & histologia , Tomografia de Coerência Óptica/métodos
3.
J Cell Sci ; 126(Pt 17): 3823-34, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23813964

RESUMO

Innexins are one of two gene families that have evolved to permit neighbouring cells in multicellular systems to communicate directly. Innexins are found in prechordates and persist in small numbers in chordates as divergent sequences termed pannexins. Connexins are functionally analogous proteins exclusive to chordates. Members of these two families of proteins form intercellular channels, assemblies of which constitute gap junctions. Each intercellular channel is a composite of two hemichannels, one from each of two apposed cells. Hemichannels dock in the extracellular space to form a complete channel with a central aqueous pore that regulates the cell-cell exchange of ions and small signalling molecules. Hemichannels can also act independently by releasing paracrine signalling molecules. optic ganglion reduced (ogre) is a member of the Drosophila innexin family, originally identified as a gene essential for postembryonic neurogenesis. Here we demonstrate, by heterologous expression in paired Xenopus oocytes, that Ogre alone does not form homotypic gap-junction channels; however, co-expression of Ogre with Innexin2 (Inx2) induces formation of functional channels with properties distinct from Inx2 homotypic channels. In the Drosophila larval central nervous system, we find that Inx2 partially colocalises with Ogre in proliferative neuroepithelia and in glial cells. Downregulation of either ogre or inx2 selectively in glia, by targeted expression of RNA interference transgenes, leads to a significant reduction in the size of the larval nervous system and behavioural defects in surviving adults. We conclude that these innexins are crucially required in glial cells for normal postembryonic development of the central nervous system.


Assuntos
Sistema Nervoso Central/embriologia , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Animais , Sequência de Bases , Sistema Nervoso Central/metabolismo , Conexinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Oócitos/citologia , Oócitos/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Xenopus laevis/embriologia
4.
Biophys J ; 101(10): 2408-16, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22098739

RESUMO

The channel proteins of gap junctions are encoded by two distinct gene families, connexins, which are exclusive to chordates, and innexins/pannexins, which are found throughout the animal kingdom. Although the relationship between the primary structure and function of the vertebrate connexins has been relatively well studied, there are, to our knowledge, no structure-function analyses of invertebrate innexins. In the first such study, we have used tryptophan scanning to probe the first transmembrane domain (M1) of the Drosophila innexin Shaking-B(Lethal), which is a component of rectifying electrical synapses in the Giant Fiber escape neural circuit. Tryptophan was substituted sequentially for 16 amino acids within M1 of Shaking-B(Lethal). Tryptophan insertion at every fourth residue (H27, T31, L35, and S39) disrupted gap junction function. The distribution of these sites is consistent with helical secondary structure and identifies the face of M1 involved in helix-helix interactions. Tryptophan substitution at several sites in M1 altered channel properties in a variety of ways. Changes in sensitivity to transjunctional voltage (Vj) were common and one mutation (S39W) induced sensitivity to transmembrane voltage (Vm). In addition, several mutations induced hemichannel activity. These changes are similar to those observed after substitutions within the transmembrane domains of connexins.


Assuntos
Membrana Celular/metabolismo , Conexinas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Mutagênese/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Triptofano/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Conexinas/química , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Eletricidade , Feminino , Junções Comunicantes/metabolismo , Ativação do Canal Iônico , Dados de Sequência Molecular , Mutagênese Insercional , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oócitos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Xenopus
5.
Curr Biol ; 18(24): 1955-60, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19084406

RESUMO

Electrical synapses are neuronal gap junctions that mediate fast transmission in many neural circuits. The structural proteins of gap junctions are the products of two multigene families. Connexins are unique to chordates; innexins/pannexins encode gap-junction proteins in prechordates and chordates. A concentric array of six protein subunits constitutes a hemichannel; electrical synapses result from the docking of hemichannels in pre- and postsynaptic neurons. Some electrical synapses are bidirectional; others are rectifying junctions that preferentially transmit depolarizing current anterogradely. The phenomenon of rectification was first described five decades ago, but the molecular mechanism has not been elucidated. Here, we demonstrate that putative rectifying electrical synapses in the Drosophila Giant Fiber System are assembled from two products of the innexin gene shaking-B. Shaking-B(Neural+16) is required presynaptically in the Giant Fiber to couple this cell to its postsynaptic targets that express Shaking-B(Lethal). When expressed in vitro in neighboring cells, Shaking-B(Neural+16) and Shaking-B(Lethal) form heterotypic channels that are asymmetrically gated by voltage and exhibit classical rectification. These data provide the most definitive evidence to date that rectification is achieved by differential regulation of the pre- and postsynaptic elements of structurally asymmetric junctions.


Assuntos
Drosophila/fisiologia , Sinapses Elétricas/fisiologia , Animais , Animais Geneticamente Modificados , Conexinas/genética , Conexinas/fisiologia , Drosophila/anatomia & histologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Marcação de Genes , Genes de Insetos , Ativação do Canal Iônico , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Oócitos/metabolismo , Fenótipo , Terminações Pré-Sinápticas/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus
6.
Semin Cell Dev Biol ; 17(1): 31-41, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16378740

RESUMO

Flies escape danger by jumping into the air and flying away. The giant fibre system (GFS) is the neural circuit that mediates this simple behavioural response to visual stimuli. The sensory signal is received by the giant fibre and relayed to the leg and wing muscle motorneurons. Many of the neurons in the Drosophila GFS are uniquely identifiable and amenable to cell biological, electrophysiological and genetic studies. Here we review the anatomy and development of this system and highlight its utility for studying many aspects of nervous system biology ranging from neural development and synaptic plasticity to the aetiology of neural disorder.


Assuntos
Drosophila melanogaster , Reação de Fuga/fisiologia , Neurônios Motores , Rede Nervosa , Sinapses/fisiologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/embriologia , Epilepsia/fisiopatologia , Voo Animal , Humanos , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Sinapses/ultraestrutura
9.
Biochim Biophys Acta ; 1711(2): 225-45, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15921654

RESUMO

Gap junctions are clusters of intercellular channels that provide cells, in all metazoan organisms, with a means of communicating directly with their neighbours. Surprisingly, two gene families have evolved to fulfil this fundamental, and highly conserved, function. In vertebrates, gap junctions are assembled from a large family of connexin proteins. Innexins were originally characterized as the structural components of gap junctions in Drosophila, an arthropod, and the nematode Caenorhabditis elegans. Since then, innexin homologues have been identified in representatives of the other major invertebrate phyla and in insect-associated viruses. Intriguingly, functional innexin homologues have also been found in vertebrate genomes. These studies have informed our understanding of the molecular evolution of gap junctions and have greatly expanded the numbers of model systems available for functional studies. Genetic manipulation of innexin function in relatively simple cellular systems should speed progress not only in defining the importance of gap junctions in a variety of biological processes but also in elucidating the mechanisms by which they act.


Assuntos
Conexinas/genética , Junções Comunicantes/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Conexinas/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Junções Comunicantes/fisiologia , Humanos , Canais Iônicos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fenótipo , Alinhamento de Sequência
10.
Mech Dev ; 113(2): 197-205, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11960713

RESUMO

Invertebrate gap junctions are composed of proteins called innexins and eight innexin encoding loci have been identified in the now complete genome sequence of Drosophila melanogaster. The intercellular channels formed by these proteins are multimeric and previous studies have shown that, in a heterologous expression system, homo- and hetero-oligomeric channels can form, each combination possessing different gating characteristics. Here we demonstrate that the innexins exhibit complex overlapping expression patterns during oogenesis, embryogenesis, imaginal wing disc development and central nervous system development and show that only certain combinations of innexin oligomerization are possible in vivo. This work forms an essential basis for future studies of innexin interactions in Drosophila and outlines the potential extent of gap-junction involvement in development.


Assuntos
Conexinas/biossíntese , Proteínas de Drosophila/biossíntese , Sequência de Aminoácidos , Animais , Sistema Nervoso Central/embriologia , Cromossomos/ultraestrutura , DNA Complementar/metabolismo , Drosophila melanogaster , Expressão Gênica , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/metabolismo , Retina/embriologia , Homologia de Sequência de Aminoácidos , Asas de Animais/embriologia
11.
Eur J Neurosci ; 4(11): 1180-1190, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12106422

RESUMO

Synaptophysin, a 38-kD glycoprotein, is one of the most abundant of the integral membrane proteins of small synaptic vesicles. The protein is widely distributed at synapses throughout the nervous system, where it is believed to be involved in the exocytosis of stored neurotransmitter. We show here that synaptophysin is also widely expressed in growing neurites and growth cones both in vitro and in vivo. In dissociated rat cerebral cortical cultures anti-synaptophysin antiserum (G-95) stains growth cones punctately as soon as they emerge from the cell body. In early cultures all neurites are immunoreactive. Later, synaptophysin is redistributed to become concentrated in axonal varicosities. In developing rat embryos, synaptophysin is expressed in the growing axons of, for instance, the spinal commissural interneurons and the parallel fibres of the cerebellar granule cells long before these neurons have established synaptic connections. These observations suggest that synaptic vesicle proteins like synaptophysin are functionally important in neuronal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...