Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1607, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383666

RESUMO

The quantum limit in a Fermi liquid, realized when a single Landau level is occupied in strong magnetic fields, gives rise to unconventional states, including the fractional quantum Hall effect and excitonic insulators. Stronger interactions in metals with nearly localized f-electron degrees of freedom increase the likelihood of these unconventional states. However, access to the quantum limit is typically impeded by the tendency of f-electrons to polarize in a strong magnetic field, consequently weakening the interactions. In this study, we propose that the quantum limit in such systems must be approached in reverse, starting from an insulating state at zero magnetic field. In this scenario, Landau levels fill in the reverse order compared to regular metals and are closely linked to a field-induced insulator-to-metal transition. We identify YbB12 as a prime candidate for observing this effect and propose the presence of an excitonic insulator state near this transition.

2.
Nat Commun ; 14(1): 4199, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452016

RESUMO

The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2 is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions.


Assuntos
Campos Magnéticos , Imãs , Anisotropia , Nêutrons , Física
3.
Inorg Chem ; 61(29): 11118-11123, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35802135

RESUMO

Transition-metal oxynitrides have a variety of functions such as visible light-responsive catalysts and dielectric materials, but acquiring single crystals necessary to understand inherent properties is difficult and is limited to relatively small sizes (<10 µm) because they easily decompose at high temperatures. Here, we have succeeded in growing platelet single crystals of TaON with a typical size of 50 × 100 × 10 µm3 under a high pressure and high temperature (6 GPa and 1400 °C) using a LiCl flux. Such a harsh condition, in contrast to powder samples synthesized under mild conditions, resulted in the introduction of a large amount of oxygen vacancies (x = 0.06 in TaO1-xN) into the crystal, providing a metallic behavior with a large anisotropy of ρc/ρab ∼ 103. Low-temperature oxygen annealing allows for a single-crystal-to-single-crystal transformation to obtain fully oxidized TaON (yellow) crystals. Needle-like crystals can be obtained when NH4Cl is used as a flux. Furthermore, black Hf2ON2 single crystals are also grown, suggesting that the high-pressure flux method is widely applicable to other transition-metal oxynitrides, with extensive carrier control.

4.
Inorg Chem ; 61(7): 3007-3017, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35143187

RESUMO

Combining neutron diffraction with pair distribution function analysis, we have uncovered hidden reduced symmetry in the correlated metallic d1 perovskite, SrVO3. Specifically, we show that both the local and global structures are better described using a GdFeO3 distorted (orthorhombic) model as opposed to the ideal cubic ABO3 perovskite type. Recent reports of imaginary phonon frequencies in the density functional theory (DFT)-calculated phonon dispersion for cubic SrVO3 suggest a possible origin of this observed non-cubicity. Namely, the imaginary frequencies computed could indicate that the cubic crystal structure is unstable at T = 0 K. However, our DFT calculations provide compelling evidence that point defects in the form of oxygen vacancies, and not an observable symmetry breaking associated with calculated imaginary frequencies, primarily result in the observed non-cubicity of SrVO3. These experimental and computational results are broadly impactful because they reach into the thin-film and theoretical communities who have shown that SrVO3 is a technologically viable transparent conducting oxide material and have used SrVO3 to develop theoretical methods, respectively.

5.
ACS Cent Sci ; 7(8): 1381-1390, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471681

RESUMO

Chemical bonding in 2D layered materials and van der Waals solids is central to understanding and harnessing their unique electronic, magnetic, optical, thermal, and superconducting properties. Here, we report the discovery of spontaneous, bidirectional, bilayer twisting (twist angle ∼4.5°) in the metallic kagomé MgCo6Ge6 at T = 100(2) K via X-ray diffraction measurements, enabled by the preparation of single crystals by the Laser Bridgman method. Despite the appearance of static twisting on cooling from T ∼300 to 100 K, no evidence for a phase transition was found in physical property measurements. Combined with the presence of an Einstein phonon mode contribution in the specific heat, this implies that the twisting exists at all temperatures but is thermally fluctuating at room temperature. Crystal Orbital Hamilton Population analysis demonstrates that the cooperative twisting between layers stabilizes the Co-kagomé network when coupled to strongly bonded and rigid (Ge2) dimers that connect adjacent layers. Further modeling of the displacive disorder in the crystal structure shows the presence of a second, Mg-deficient, stacking sequence. This alternative stacking sequence also exhibits interlayer twisting, but with a different pattern, consistent with the change in electron count due to the removal of Mg. Magnetization, resistivity, and low-temperature specific heat measurements are all consistent with a Pauli paramagnetic, strongly correlated metal. Our results provide crucial insight into how chemical concepts lead to interesting electronic structures and behaviors in layered materials.

6.
Phys Rev Lett ; 127(26): 267201, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029479

RESUMO

We observe a wealth of multimagnon bound states in the strongly anisotropic spin-1 triangular antiferromagnet FeI_{2} using time-domain terahertz spectroscopy. These unconventional excitations can arise in ordered magnets due to attractive magnon-magnon interactions and alter their properties. We analyze the energy-magnetic field spectrum via an exact diagonalization method for a dilute gas of interacting magnons and detect up to 4- and 6-magnon bound states, hybridized with single magnons. This zoo of tunable interacting quasiparticles provides a unique platform to study decay and renormalization, reminiscent of the few-body problems found in cold-atom, nuclear, and particle physics.

7.
Inorg Chem ; 59(23): 17251-17258, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33164501

RESUMO

A family of high entropy oxides with the formula Mg2Ta3Ln3O14 (Ln = La, Pr, Nd, Sm, Eu, Gd) has been discovered and synthesized. Single crystals, 5 mm OD × 2.5 cm, for Ln = Nd have been grown using the laser optical floating zone technique. Crystal orientations are confirmed by Laue diffraction, and structure solutions were obtained via single crystal X-ray diffraction. The structure is found to be a partially disordered pyrochlore, space group Fd-3m, fractional chemical formula (Mg0.25Nd0.75)2(Mg0.25Ta0.75)2O7. Magnetization measurements indicate ordinary paramagnetic behavior in all compounds down to T = 2 K, except in the Eu variant which possesses Van Vleck paramagnetism. Specific heat measurements for Ln = Nd shows no phase transitions between T = 300 and 2 K. We demonstrate the ability to prepare magnetically disordered materials by substitution of Mg with Ni, Mn, and Co, demonstrating the flexibility of this family in accommodating defects. The stabilization of these compounds could be due to the entropy gain associated with defects, showcasing a "materials by design" approach by using disorder to stabilize novel magnetic and optical materials. Our work also demonstrates the feasibility of preparing high entropy oxides in single crystalline form.

8.
Sci Adv ; 6(9): eaay4213, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32158941

RESUMO

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(-)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer-dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.

9.
Nano Lett ; 19(11): 8250-8254, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31658813

RESUMO

Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the recently discovered two-dimensional van der Waals magnetic materials, offers a unique platform for anomalous Nernst effect because of its metallic and topological nature. Here, we report the observation of large anomalous Nernst effect in Fe3GeTe2. The anomalous Hall angle and anomalous Nernst angle are about 0.07 and 0.09, respectively, far larger than those in common ferromagnets. By utilizing the Mott relation, these large angles indicate a large Berry curvature near the Fermi level, consistent with the recent proposal for Fe3GeTe2 as a topological nodal line semimetal candidate. Our work provides evidence of Fe3GeTe2 as a topological ferromagnet and demonstrates the feasibility of using two-dimensional magnetic materials and their band topology for spin caloritronics applications.

10.
Dalton Trans ; 46(18): 5806-5815, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28247877

RESUMO

A series of nickel(ii) aryloxide ([Ni(OAr)2(py)x]) precursors was synthesized from an amide-alcohol exchange using [Ni(NR2)2] in the presence of pyridine (py). The H-OAr selected were the mono- and di-ortho-substituted 2-alkyl phenols: alkyl = methyl (H-oMP), iso-propyl (H-oPP), tert-butyl (H-oBP) and 2,6-di-alkyl phenols (alkyl = di-iso-propyl (H-DIP), di-tert-butyl (H-DBP), di-phenyl (H-DPhP)). The crystalline products were solved as solvated monomers and structurally characterized as [Ni(OAr)2(py)x], where x = 4: OAr = oMP (1), oPP (2); x = 3: OAr = oBP (3), DIP (4); x = 2: OAr = DBP (5), DPhP (6). The excited states (singlet or triplet) and various geometries of 1-6 were identified by experimental UV-vis and verified by computational modeling. Magnetic susceptibility of the representative compound 4 was fit to a Curie Weiss model that yielded a magnetic moment of 4.38(3)µB consistent with a Ni2+ center. Compounds 1 and 6 were selected for decomposition studied under solution precipitation routes since they represent the two extremes of coordination. The particle size and crystalline structure were characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The materials isolated from 1 and 6 were found by TEM to form irregular shape nanomaterials (8-15 nm), which by PXRD were found to be Ni0 hcp (PDF: 01-089-7129) and fcc (PDF: 01-070-0989), respectively.

11.
Phys Rev Lett ; 114(3): 036401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659009

RESUMO

Using inelastic neutron scattering, we map a 14 meV coherent resonant mode in the topological Kondo insulator SmB6 and describe its relation to the low energy insulating band structure. The resonant intensity is confined to the X and R high symmetry points, repeating outside the first Brillouin zone and dispersing less than 2 meV, with a 5d-like magnetic form factor. We present a slave-boson treatment of the Anderson Hamiltonian with a third neighbor dominated hybridized band structure. This approach produces a spin exciton below the charge gap with features that are consistent with the observed neutron scattering. We find that maxima in the wave vector dependence of the inelastic neutron scattering indicate band inversion.

12.
Inorg Chem ; 53(9): 4500-7, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24739024

RESUMO

The synthesis and physical properties of the K(1-x)Ir4O8 (0 ≤ x ≤ 0.7) solid solution are reported. The structure of KIr4O8, solved with single-crystal X-ray diffraction at T = 110 K, is found to be tetragonal, space group I4/m, with a = 10.0492(3) Å and c = 3.14959(13) Å. A highly anisotropic displacement parameter is found for the potassium cation. Density functional theory calculations suggest that this anisotropy is due to a competition between atomic size and bond valence. KIr4O8 has a significant electronic contribution to the specific heat, γ = 13.9 mJ mol-Ir(-1) K(-2), indicating an effective carrier mass of m*/me ≈ 10. Further, there is a magnetic-field-dependent upturn in the specific heat at T < 3 K, suggestive of a magnetically sensitive phase transition below T < 1.8 K. Resistivity and magnetization measurements show that both end-members of the solid solution, KIr4O8 and K(1-x)Ir4O8 (x ≈ 0.7), are metallic, with no significant trends in the temperature-independent contributions to the magnetization. These results are interpreted and discussed in the context of the importance of the variability of the oxidation state of iridium. The differences in physical properties between members of the K(1-x)Ir4O8 (0 ≤ x ≤ 0.7) series are small and appear to be insensitive to the iridium oxidation state.

13.
J Am Chem Soc ; 135(14): 5372-4, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23527484

RESUMO

High-temperature superconductivity has a range of applications from sensors to energy distribution. Recent reports of this phenomenon in compounds containing electronically active BiS2 layers have the potential to open a new chapter in the field of superconductivity. Here we report the identification and basic properties of two new ternary Bi-O-S compounds, Bi2OS2 and Bi3O2S3. The former is non-superconducting; the latter likely explains the superconductivity at T(c) = 4.5 K previously reported in "Bi4O4S3". The superconductivity of Bi3O2S3 is found to be sensitive to the number of Bi2OS2-like stacking faults; fewer faults correlate with increases in the Meissner shielding fractions and T(c). Elucidation of the electronic consequences of these stacking faults may be key to the understanding of electronic conductivity and superconductivity which occurs in a nominally valence-precise compound.


Assuntos
Bismuto/química , Oxigênio/química , Enxofre/química , Condutividade Elétrica
14.
Inorg Chem ; 51(21): 11412-21, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23094647

RESUMO

Single crystals of Ln(2)Fe(4)Sb(5) (Ln = La-Nd and Sm) were grown from an inert Bi flux. Measurements of the single crystal X-ray diffraction revealed that these compounds crystallize in the tetragonal space group I4/mmm with lattice parameters of a ≈ 4 Å, c ≈ 26 Å, V ≈ 500 Å(3), and Z = 2. This crystal structure consists of alternating LnSb(8) square antiprisms and Fe-sublattices composed of nearly equilateral triangles of bonded Fe atoms. These compounds are metallic and display spin glass behavior, which originates from the magnetic interactions within the Fe-sublattice. Specific heat measurements are void of any sharp features that can be interpreted as contributions from phase transitions as is typical for spin glass systems. A large, approximately linear in temperature, contribution to the specific heat of La(2)Fe(4)Sb(5) is observed at low temperatures that we interpret as having a magnetic origin. Herein, we report the synthesis, structure, and physical properties of Ln(2)Fe(4)Sb(5) (Ln = La-Nd and Sm).

15.
Inorg Chem ; 51(19): 10193-202, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22963342

RESUMO

Ln(Cu,Al,Ga)(13-x) (Ln = La-Pr, and Eu; x ~ 0.2) were synthesized by a combined Al/Ga flux. Single crystal X-ray and neutron diffraction experiments revealed that these compounds crystallize in the NaZn(13) structure-type (space group Fm3[overline]c) with lattice parameters of a ~ 12 Å, V ~ 1600 Å, and Z ~ 8. Our final neutron models led us to conclude that Cu is occupationally disordered on the 8b Wyckoff site while Cu, Al, and Ga are substitutionally disordered on the 96i Wyckoff site of this well-known structure-type. The magnetic susceptibility data show that Ce(Cu,Al,Ga)(13-x) and Pr(Cu,Al,Ga)(13-x) exhibit paramagnetic behavior down to the lowest temperatures measured while Eu(Cu,Al,Ga)(13-x) displays ferromagnetic behavior below 6 K. Eu(Cu,Al)(13-x) was prepared via arc-melting and orders ferromagnetically below 8 K. The magnetocaloric properties of Eu(Cu,Al,Ga)(13-x) and Eu(Cu,Al)(13-x) were measured and compared. Additionally, an enhanced value of the Sommerfeld coefficient (γ = 356 mJ/mol-K(2)) was determined for Pr(Cu,Al,Ga)(13-x). Herein, we present the synthesis, structural refinement details, and physical properties of Ln(Cu,Al,Ga)(13-x) (Ln = La-Pr, and Eu) and Eu(Cu,Al)(13-x).

16.
Inorg Chem ; 51(2): 920-7, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22206264

RESUMO

LnCu(2)(Al,Si)(5) (Ln = La and Ce) were synthesized and characterized. These compounds adopt the SrAu(2)Ga(5) structure type and crystallize in the tetragonal space group P4/mmm with unit cell dimensions of a ≈ 4.2 Å and c ≈ 7.9 Å. Herein, we report the structure as obtained from single crystal X-ray diffraction. Additionally, we report the magnetic susceptibility, magnetization, resistivity, and specific heat capacity data obtained for polycrystalline samples of LnCu(2)(Al,Si)(5) (Ln = La and Ce).

17.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 4): o757, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21754054

RESUMO

The crystal structure of the title compound, C(12)H(11)NS, features parallel chains of alternating N-H⋯S hydrogen-bonded mirror-image conformers along [10[Formula: see text]]. The mol-ecular conformation is that of an envelope, with all of the framework atoms except one close to a mean plane (rms deviation 0.054 Å); one C atom of the cyclo-hexene-thione ring forms the envelope flap, which makes a dihedral angle of 48.6 (1)° with the rest of the mol-ecule. There is a π-π* inter-action between pairs of enanti-omers in adjacent chains; the distance between parallel planes is 3.466 (1) Å.

18.
Dalton Trans ; 39(28): 6403-9, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20532399

RESUMO

Single crystals of LnFeSb(3) (Ln = Pr, Nd, Sm, Gd, and Tb) have been grown from excess Sb flux. The crystal structure consists of (infinity)(2)[FeSb(2)] octahedra separated by layers of Ln atoms and nearly square planar nets of (infinity)(2)[Sb(2)]. These compounds are metallic and display anisotropic magnetic properties. Long-range antiferromagnetic order is observed in the Sm, Gd, and Tb samples when the magnetic field is applied along the crystallographic a-axis. Evidence of magnetic ordering in all the samples is observed for the field applied parallel to the layers. The magnetic properties are well-described by considering only the magnetic interactions between the Ln 4f moments, with no contribution from the Fe sublattice. Herein, we report the crystal growth, structure, magnetization, transport, and chemical stabilities of the title compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA