Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pigment Cell Melanoma Res ; 35(5): 539-547, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35869673

RESUMO

Uveal melanoma (UM) is the most common primary malignancy of the adult eye but lacks any FDA-approved therapy for the deadly metastatic disease. Thus, there is a great need to dissect the driving mechanisms for UM and develop strategies to evaluate potential therapeutics. Using an autochthonous zebrafish model, we previously identified MITF, the master melanocyte transcription factor, as a tumor suppressor in GNAQQ209L -driven UM. Here, we show that zebrafish mitfa-deficient GNAQQ209L -driven tumors significantly up-regulate neural crest markers, and that higher expression of a melanoma-associated neural crest signature correlates with poor UM patient survival. We further determined how the mitfa-null state, as well as expression of GNAQQ209L , YAPS127A;S381A , or BRAFV600E oncogenes, impacts melanocyte lineage cells before they acquire the transformed state. Specifically, examination 5 days post-fertilization showed that mitfa-deficiency is sufficient to up-regulate pigment progenitor and neural crest markers, while GNAQQ209L expression promotes a proliferative phenotype that is further enhanced by YAPS127A;S381A co-expression. Finally, we show that this oncogene-induced proliferative phenotype can be used to screen chemical inhibitors for their efficacy against the UM pathway. Overall, this study establishes that a neural crest signature correlates with poor UM survival, and describes an in vivo assay for preclinical trials of potential UM therapeutics.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Neoplasias Uveais , Peixe-Zebra , Animais , Linhagem da Célula , Proliferação de Células , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Melanócitos/metabolismo , Melanoma , Mutação , Oncogenes , Neoplasias Uveais/patologia , Peixe-Zebra/genética
2.
Proc Natl Acad Sci U S A ; 119(19): e2107006119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512098

RESUMO

Cutaneous melanoma (CM) and uveal melanoma (UM) both originate from the melanocytic lineage but are primarily driven by distinct oncogenic drivers, BRAF/NRAS or GNAQ/GNA11, respectively. The melanocytic master transcriptional regulator, MITF, is essential for both CM development and maintenance, but its role in UM is largely unexplored. Here, we use zebrafish models to dissect the key UM oncogenic signaling events and establish the role of MITF in UM tumors. Using a melanocytic lineage expression system, we showed that patient-derived mutations of GNAQ (GNAQQ209L) or its upstream CYSLTR2 receptor (CYSLTR2L129Q) both drive UM when combined with a cooperating mutation, tp53M214K/M214K. The tumor-initiating potential of the major GNAQ/11 effector pathways, YAP, and phospholipase C-ß (PLCß)­ERK was also investigated in this system and thus showed that while activated YAP (YAPAA) induced UM with high potency, the patient-derived PLCß4 mutation (PLCB4D630Y) very rarely yielded UM tumors in the tp53M214K/M214K context. Remarkably, mitfa deficiency was profoundly UM promoting, dramatically accelerating the onset and progression of tumors induced by Tg(mitfa:GNAQQ209L);tp53M214K/M214K or Tg(mitfa:CYSLTR2L129Q);tp53M214K/M214K. Moreover, mitfa loss was sufficient to cooperate with GNAQQ209L to drive tp53­wild type UM development and allowed Tg(mitfa:PLCB4D630Y);tp53M214K/M214K melanocyte lineage cells to readily form tumors. Notably, all of the mitfa−/− UM tumors, including those arising in Tg(mitfa:PLCB4D630Y);tp53M214K/M214K;mitfa−/− zebrafish, displayed nuclear YAP while lacking hyperactive ERK indicative of PLCß signaling. Collectively, these data show that YAP signaling is the major mediator of UM and that MITF acts as a bona fide tumor suppressor in UM in direct opposition to its essential role in CM.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/terapia , Melanoma Maligno Cutâneo
3.
Genes Dev ; 30(18): 2062-2075, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27688402

RESUMO

Heat-shock factor (HSF) is the master transcriptional regulator of the heat-shock response (HSR) and is essential for stress resilience. HSF is also required for metazoan development; however, its function and regulation in this process are poorly understood. Here, we characterize the genomic distribution and transcriptional activity of Caenorhabditis elegans HSF-1 during larval development and show that the developmental HSF-1 transcriptional program is distinct from the HSR. HSF-1 developmental activation requires binding of E2F/DP to a GC-rich motif that facilitates HSF-1 binding to a heat-shock element (HSE) that is degenerate from the consensus HSE sequence and adjacent to the E2F-binding site at promoters. In contrast, induction of the HSR is independent of these promoter elements or E2F/DP and instead requires a distinct set of tandem canonical HSEs. Together, E2F and HSF-1 directly regulate a gene network, including a specific subset of chaperones, to promote protein biogenesis and anabolic metabolism, which are essential in development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Fatores de Transcrição E2F/metabolismo , Resposta ao Choque Térmico/genética , Animais , Fatores de Transcrição E2F/genética , Redes Reguladoras de Genes/genética , Genoma Helmíntico/genética , Larva/genética , Larva/crescimento & desenvolvimento , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...