Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 18477, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686301

RESUMO

We present non-faradaic electrochemical recordings of exocytosis from populations of mast and chromaffin cells using chemoreceptive neuron MOS (CνMOS) transistors. In comparison to previous cell-FET-biosensors, the CνMOS features control (CG), sensing (SG) and floating gates (FG), allows the quiescent point to be independently controlled, is CMOS compatible and physically isolates the transistor channel from the electrolyte for stable long-term recordings. We measured exocytosis from RBL-2H3 mast cells sensitized by IgE (bound to high-affinity surface receptors FcεRI) and stimulated using the antigen DNP-BSA. Quasi-static I-V measurements reflected a slow shift in surface potential () which was dependent on extracellular calcium ([Ca]o) and buffer strength, which suggests sensitivity to protons released during exocytosis. Fluorescent imaging of dextran-labeled vesicle release showed evidence of a similar time course, while un-sensitized cells showed no response to stimulation. Transient recordings revealed fluctuations with a rapid rise and slow decay. Chromaffin cells stimulated with high KCl showed both slow shifts and extracellular action potentials exhibiting biphasic and inverted capacitive waveforms, indicative of varying ion-channel distributions across the cell-transistor junction. Our approach presents a facile method to simultaneously monitor exocytosis and ion channel activity with high temporal sensitivity without the need for redox chemistry.


Assuntos
Técnicas Biossensoriais/métodos , Células Cromafins/química , Exocitose , Mastócitos/química , Animais , Dinitrofenóis/química , Técnicas Eletroquímicas , Imunoglobulina E/química , Ratos , Soroalbumina Bovina/química , Transistores Eletrônicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-23944512

RESUMO

Electrochemical gating is the process by which an electric field normal to the insulator electrolyte interface shifts the surface chemical equilibrium and further affects the charge in solution [Jiang and Stein, Langmuir 26, 8161 (2010)]. The surface chemical reactivity and double-layer charging at the interface of electrolyte-oxide-semiconductor (EOS) capacitors is investigated. We find a strong pH-dependent hysteresis upon dc potential cycling. Varying salinity at a constant pH does not change the hysteretic window, implying that field-induced surface pH regulation is the dominant cause of hysteresis. We propose and investigate this mechanism in foundry-made floating-gate ion-sensitive field-effect transistors, which can serve as both an ionic sensor and an actuator. Termed the chemoreceptive neuron metal-oxide-semiconductor (CνMOS) transistor, it features independently driven control gates (CGs) and sensing gates (SGs) that are capacitively coupled to an extended floating gate (FG). The SG is exposed to fluid, the CG is independently driven, and the FG is capable of storing charge Q(FG) of either polarity. Asymmetric capacitive coupling between the CG and SG to FG results in intrinsic amplification of the measured surface potential shifts and influences the FG charge injection mechanism. This modified SG surface condition was monitored through transient recordings of the output current, performed under alternate positive and negative CG pulses. Transient recordings revealed a hysteresis where the current was enhanced under negative pulsing and reduced after positive pulsing. This hysteresis effect is similar to that observed with EOS capacitors, suggesting a field-dependent surface charge regulation mechanism at play. At high CG biases, nonvolatile charge Q(FG) tunneling into the FG occurs, which creates a larger field and tunes the pH response and the point of zero charge. This mechanism gives rise to surface programmability. In this paper we describe the operational principles, tunneling mechanism, and role of electrolyte composition under field modulation. The experimental findings are then modeled by a Poisson-Boltzmann formulation with surface pH regulation. We find that surface ionization constants play a dominant role in determining the pH tuning effect. In the following paper [K. Jayant et al., Phys. Rev. E 88, 012802 (2013)] we extend the dual-gate operation to molecular sensing and demonstrate the use of Q(FG) to achieve manipulation of surface-adsorbed DNA.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23944513

RESUMO

The chemoreceptive neuron metal-oxide-semiconductor transistor described in the preceding paper is further used to monitor the adsorption and interaction of DNA molecules and subsequently manipulate the adsorbed biomolecules with injected static charge. Adsorption of DNA molecules onto poly-L-lysine-coated sensing gates (SGs) modulates the floating gate (FG) potential ψ(O), which is reflected as a threshold voltage shift measured from the control gate (CG) V(th_CG). The asymmetric capacitive coupling between the CG and SG to the FG results in V(th_CG) amplification. The electric field in the SG oxide E(SG_ox) is fundamentally different when we drive the current readout with V(CG) and V(ref) (i.e., the potential applied to the CG and reference electrode, respectively). The V(CG)-driven readout induces a larger E(SG_ox), leading to a larger V(th_CG) shift when DNA is present. Simulation studies indicate that the counterion screening within the DNA membrane is responsible for this effect. The DNA manipulation mechanism is enabled by tunneling electrons (program) or holes (erase) onto FGs to produce repulsive or attractive forces. Programming leads to repulsion and eventual desorption of DNA, while erasing reestablishes adsorption. We further show that injected holes or electrons prior to DNA addition either aids or disrupts the immobilization process, which can be used for addressable sensor interfaces. To further substantiate DNA manipulation, we used impedance spectroscopy with a split ac-dc technique to reveal the net interface impedance before and after charge injection.


Assuntos
DNA/análise , Transistores Eletrônicos , Adsorção , DNA/química , Espectroscopia Dielétrica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...