Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 27(5): 526-534, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28000683

RESUMO

Air pollution is hypothesized to have negative impacts on infant pulmonary health because of infants' increased rates of respiration and ongoing lung development. The severity and type of impact may differ depending on elemental concentrations. We conducted a study of 21 infants <6 months old whose parents carried a small personal particulate monitoring device (RTI MicroPEM) and GPS unit with the infant for 7 days in January and February 2015. The study area was Utah County, UT, USA. Real-time particulate exposure levels, as well as optical density and elemental analysis of the particulate matter (PM), were compared with levels from an outdoor stationary monitor. Infants spent an average of 87.4% of their time indoors. PM levels varied widely by infant and time of day (average=19.07 µg/m3, range=0.63-170.25 µg/m3). Infant particulate exposures were not well approximated by the outdoor monitor. Infants had lower exposures to Sb, Mn, Pb, W and Fe than the outdoor monitor and higher exposures to Cd, Ni and Na. Differences were most pronounced for Na. Brown carbon was only detected by personal monitors and not by the outdoor monitor. Further research is needed to understand the potential implications of indoor elemental exposures on early respiratory development.


Assuntos
Exposição Ambiental , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Adulto , Humanos , Lactente , Metais/análise , Pais , Utah
2.
J Air Waste Manag Assoc ; 66(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26512925

RESUMO

UNLABELLED: Continued development of personal air pollution monitors is rapidly improving government and research capabilities for data collection. In this study, we tested the feasibility of using GPS-enabled personal exposure monitors to collect personal exposure readings and short-term daily PM2.5 measures at 15 fixed locations throughout a community. The goals were to determine the accuracy of fixed-location monitoring for approximating individual exposures compared to a centralized outdoor air pollution monitor, and to test the utility of two different personal monitors, the RTI MicroPEM V3.2 and TSI SidePak AM510. For personal samples, 24-hr mean PM2.5 concentrations were 6.93 µg/m³ (stderr = 0.15) and 8.47 µg/m³ (stderr = 0.10) for the MicroPEM and SidePak, respectively. Based on time-activity patterns from participant journals, exposures were highest while participants were outdoors (MicroPEM = 7.61 µg/m³, stderr = 1.08, SidePak = 11.85 µg/m³, stderr = 0.83) or in restaurants (MicroPEM = 7.48 µg/m³, stderr = 0.39, SidePak = 24.93 µg/m³, stderr = 0.82), and lowest when participants were exercising indoors (MicroPEM = 4.78 µg/m³, stderr = 0.23, SidePak = 5.63 µg/m³, stderr = 0.08). Mean PM(2.5) at the 15 fixed locations, as measured by the SidePak, ranged from 4.71 µg/m³ (stderr = 0.23) to 12.38 µg/m³ (stderr = 0.45). By comparison, mean 24-h PM(2.5) measured at the centralized outdoor monitor ranged from 2.7 to 6.7 µg/m³ during the study period. The range of average PM(2.5) exposure levels estimated for each participant using the interpolated fixed-location data was 2.83 to 19.26 µg/m³ (mean = 8.3, stderr = 1.4). These estimated levels were compared with average exposure from personal samples. The fixed-location monitoring strategy was useful in identifying high air pollution microclimates throughout the county. For 7 of 10 subjects, the fixed-location monitoring strategy more closely approximated individuals' 24-hr breathing zone exposures than did the centralized outdoor monitor. Highlights are: Individual PM(2.5) exposure levels vary extensively by activity, location and time of day; fixed-location sampling more closely approximated individual exposures than a centralized outdoor monitor; and small, personal exposure monitors provide added utility for individuals, researchers, and public health professionals seeking to more accurately identify air pollution microclimates. IMPLICATIONS: Personal air pollution monitoring technology is advancing rapidly. Currently, personal monitors are primarily used in research settings, but could they also support government networks of centralized outdoor monitors? In this study, we found differences in performance and practicality for two personal monitors in different monitoring scenarios. We also found that personal monitors used to collect outdoor area samples were effective at finding pollution microclimates, and more closely approximated actual individual exposure than a central monitor. Though more research is needed, there is strong potential that personal exposure monitors can improve existing monitoring networks.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Tamanho da Partícula , Material Particulado/química , Exposição Ambiental , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...