Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(4)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35456877

RESUMO

Actinobacteria of the genus Amycolatopsis are important for antibiotic production and other valuable biotechnological applications such as bioconversion or bioremediation. Despite their importance, tools and methods for their genetic manipulation are less developed than in other actinobacteria such as Streptomyces. We report here the use of the pSAM2 site-specific recombination system to delete antibiotic resistance cassettes used in gene replacement experiments or to create large genomic deletions. For this purpose, we constructed a shuttle vector, replicating in Escherichia coli and Amycolatopsis, expressing the integrase and the excisionase from the Streptomyces integrative and conjugative element pSAM2. These proteins are sufficient for site-specific recombination between the attachment sites attL and attR. We also constructed two plasmids, replicative in E. coli but not in Amycolatopsis, for the integration of the attL and attR sites on each side of a large region targeted for deletion. We exemplified the use of these tools in Amycolatopsis mediterranei by obtaining with high efficiency a marker-free deletion of one single gene in the rifamycin biosynthetic gene cluster or of the entire 90-kb cluster. These robust and simple tools enrich the toolbox for genome engineering in Amycolatopsis.

2.
Toxins (Basel) ; 13(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34564640

RESUMO

Harmful cyanobacterial algal blooms and cyanotoxins currently pose a major threat to global society, one that exceeds local and national interests due to their extremely destructive effects on the environment and human health [...].


Assuntos
Toxinas de Cianobactérias/análise , Cianobactérias/química , Purificação da Água/estatística & dados numéricos , Águas Residuárias/química , Águas Residuárias/microbiologia
3.
Nanoscale Horiz ; 6(6): 474-481, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33960354

RESUMO

The triangular lattice with Ising magnetic moments is an archetypical example of geometric frustration. In the case of dipolar-coupled out-of-plane moments, the geometric frustration results in a disordered classical spin-liquid state at higher temperatures while the system is predicted to transition to an anti-ferromagnetic stripe ground state at low temperatures. In this work we fabricate artificial triangular Ising spin systems without and with uniaxial in-plane compression to tune the nature and temperature of the correlations. We probe the energy scale and nature of magnetic correlations by grazing-incidence small-angle neutron scattering. In particular, we apply a newly-developed empirical structure-factor model to describe the measured short-range correlated spin-liquid state, and find good agreement with theoretical predictions. We demonstrate that grazing-incidence neutron scattering on our high-quality samples, in conjunction with detailed modeling of the scattering using the Distorted Wave Born Approximation, can be used to experimentally quantify the spin-liquid-like correlations in highly-frustrated artificial spin systems.

4.
Langmuir ; 37(15): 4666-4677, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33826345

RESUMO

In pursuit of friendlier conditions for the preparation of high-value biochemicals, we developed catalytic synthesis of γ-valerolactone by levulinic acid hydrogenation with formic acid as the hydrogen source. Both levulinic and formic acid are intermediate products in the biomass transformation processes. The objective of the work is twofold: the development of a novel approach for milder synthesis conditions to produce γ-valerolactone and the reduction of the economic cost of the catalyst. Ni-rich Ni-Pt mesoporous nanowires were synthesized in an aqueous medium using a combined hard-soft-template-assisted electrodeposition method, in which porous polycarbonate membranes controlled the shape and the Pluronic P-123 copolymer served as the porogen agent. The electrodeposition conditions selected favored nickel deposition and generated nanowires with nickel percentages above 75 atom %. The increase in deposition potential favored nickel deposition. However, it was detrimental for the porous diameter because the mesoporous structure is promoted by the presence of the platinum-rich micelles near the substrate, which is not favored at more negative potentials. The prepared catalysts promoted the complete transformation to γ-valerolactone in a yield of around 99% and proceeded with the absence of byproducts. The coupling temperature and reaction time were optimized considering the energy cost. The threshold operational temperature was established at 140 °C, at which, 120 min was sufficient for attaining the complete transformation. Working temperatures below 140 °C rendered the reaction completion difficult. The Ni78Pt22 nanowires exhibited excellent reusability, with minimal nickel leaching into the reaction mixture, whereas those with higher nickel contents showed corrosion.

5.
Water Res ; 188: 116543, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137522

RESUMO

This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.

6.
Small ; 16(44): e2004099, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33025737

RESUMO

3D magnetic nanostructures are of great interest due to the possibility to design novel properties and the benefits for both technological applications such as high-density data storage, as well as more fundamental studies. One of the main challenges facing the realization of these three-dimensional systems is their fabrication, which includes the deposition of magnetic materials on 3D surfaces. In this work, the electroless deposition of Ni-Fe on a 3D-printed, non-conductive microstructure is presented. The deposited films exhibit low coercivity, with the saturation magnetization and composition corresponding to the archetypal soft magnetic material permalloy. For fundamental studies of 3D micromagnetism, this new development in fabrication offers the possibility to combine the flexibility of 3D nanofabrication techniques such as two-photon lithography for the fabrication of 3D scaffolds with a homogeneous soft ferromagnetic thin film, and thus represents an important step toward exploring the rich physics of complex 3D magnetic architectures with tailored properties and the development of advanced applications.

7.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717944

RESUMO

The use of soft templates for the electrosynthesis of mesoporous materials has shown tremendous potential in energy and environmental domains. Among all the approaches that have been featured in the literature, block copolymer-templated electrodeposition had robustness and a simple method, but it practically cannot be used for the synthesis of mesoporous materials not based on Pt or Au. Nonetheless, extending and understanding the possibilities and limitations of block copolymer-templated electrodeposition to other materials and substrates is still challenging. Herein, a critical analysis of the role of the solution's primary electroactive components and the applied potential were performed in order to understand their influences on the mesostructure of Ni-rich Ni-Pt mesoporous films. Among all the components, tetrahydrofuran and a platinum (IV) complex were shown to be crucial for the formation of a truly 3D mesoporous network. The electrosynthesized well-ordered mesoporous Ni-rich Ni-Pt deposits exhibit excellent electrocatalytic performance for methanol oxidation in alkaline conditions, improved stability and durability after 1000 cycles, and minimal CO poisoning.

8.
Beilstein J Nanotechnol ; 11: 798-806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509493

RESUMO

Structural colours have received a lot of attention regarding the reproduction of the vivid colours found in nature. In this study, metal-anodic aluminium oxide (AAO)-Al nanostructures were deposited using a two-step anodization and sputtering process to produce self-ordered anodic aluminium oxide films and a metal layer (8 nm Cr and 25, 17.5 and 10 nm of Au), respectively. AAO films of different thickness were anodized and the Yxy values (Y is the luminance value, and x and y are the chromaticity values) were obtained via reflectance measurements. An empirical model based on the thickness and porosity of the nanostructures was determined, which describes a gamut of colours. The proposed mathematical model can be applied in different fields, such as wavelength absorbers, RGB (red, green, blue) display devices, as well as chemical or optical sensors.

9.
Adv Sci (Weinh) ; 7(3): 1902447, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042564

RESUMO

Water remediation and development of carbon-neutral fuels are a priority for the evermore industrialized society. The answer to these challenges should be simple, sustainable, and inexpensive. Thus, biomimetic-inspired circular and holistic processes combing water remediation and biofuel production can be an appealing concept to deal with these global issues. A simple circular approach using helical Spirulina platensis microalgae as biotemplates to synthesize Ni@ZnO@ZnS photocatalysts for efficient solar water decontamination and bioethanol production during the recycling process is presented. Under solar irradiation, the Ni@ZnO@ZnS-Spirulina photocatalyst exhibits enhanced activity (mineralization efficiency >99%) with minimal photocorrosion and excellent reusability. At the end of its effective lifetime for water remediation, the microalgae skeleton (mainly glycogen and glucose) of the photocatalyst is recycled to directly produce bioethanol by simultaneous saccharification and fermentation process. An outstanding ethanol yield of 0.4 L kg-1, which is similar to the highest yield obtained from oxygenic photosynthetic microorganisms, is obtained. Thus, the entire process allows effective solar photocatalytic water remediation and bioethanol production at room temperature using simple and easily scalable procedures that simultaneously fixes carbon dioxide, thereby constituting a zero-carbon-emission circular process.

10.
Water Res ; 169: 115210, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670084

RESUMO

Developing efficient sunlight photocatalysts with enhanced photocorrosion resistance and minimal ecotoxicological effects on aquatic biota is critical to combat water contamination. Here, the role of chemical composition, architecture, and fixation on the ecotoxicological effects on microalgae of different ZnO and ZnO@ZnS based water decontamination photocatalysts was analyzed in depth. In particular, the ecotoxicological effects of films, nanoparticles and biomimetic micro/nano-ferns were carefully assessed by correlating the algae's viability to the Zn(II) release, the photocatalyst-microalgae interaction, and the production of reactive oxygen species (ROS). The results showed a drastic improvement in algal viability for supported ZnO@ZnS core@shell micro/nanoferns, as their ecotoxicity after 96 h light exposure was significantly lower (3.7-10.0% viability loss) compared to the ZnO films (18.4-35.5% loss), ZnO micro/nanoferns (28.5-53.5% loss), ZnO nanoparticles (48.3-91.7% loss) or ZnO@ZnS nanoparticles (8.6-19.2% loss) for catalysts concentrations ranging from 25 mg L-1 to 400 mg L-1. In particular, the ZnO@ZnS micro/nanoferns with a concentration of 400 mg L-1 exhibited excellent photocatalytic efficiency to mineralize a multi-pollutant solution (81.4 ±â€¯0.3% mineralization efficiency after 210 min under UV-filtered visible light irradiation) and minimal photocorrosion (<5% of photocatalyst dissolution after 96 h of UV-filtered visible light irradiation). Remarkably, the ZnO@ZnS micro/nanoferns showed lower loss of algal viability (9.8 ±â€¯1.1%) after 96 h of light exposure, with minimal reduction in microalgal biomass (9.1 ±â€¯1.0%), as well as in the quantity of chlorophyll-a (9.5 ±â€¯1.0%), carotenoids (8.6 ±â€¯0.9%) and phycocyanin (5.6 ±â€¯0.6%). Altogether, the optimized ZnO@ZnS core@shell micro/nanoferns represent excellent ecofriendly photocatalysts for water remediation in complex media, as they combine enhanced sunlight remediation efficiency, minimal adverse effects on biological microorganisms, high reusability and easy recyclability.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Óxido de Zinco , Biota , Catálise
11.
RSC Adv ; 9(44): 25762-25775, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530084

RESUMO

The electrodeposition of stainless steel-like FeCrNi alloys for miniaturised devices is appealing as it would allow combining excellent material properties (e.g. corrosion resistance, hardness, biocompatibility) at low-cost. However, conventional baths often contain hazardous hexavalent chromium. Cr-based alloys electrodeposited from environmentally friendly trivalent chromium electrolytes are crucial for industrial application for facilitating the transition towards sustainable and ecological production and processing. Nevertheless, this process has not been comprehensively studied or understood in depth: especially the role of organic agents (common additives for improving Cr(iii)-based plating; e.g. glycine) in terms of material properties of the electrodeposits. The aim of this work was to investigate the electrodeposition of FeCrNi coatings from a 'green' Cr(iii)-glycine electrolyte. Novel information was attained by analysing films developed under various conditions and characterising them using a combination of advanced techniques. The evolution of microstructure (from amorphous to nanocrystalline) in correlation with film composition (i.e. metals ratio and presence of impurities) and elemental 3D spatial distribution was achieved for coatings produced from different anode materials and thermal post-treatment. The influence of Cr(iii) and glycine in terms of coating atomic contents (i.e. Fe-Cr-Ni-O-C-N-H) was evaluated for films in which both the applied current density and electrolyte composition were varied. These results, together with a thorough analysis on metals speciation/complexation allowed us to propose various Cr(iii)-based electroreduction mechanisms, and to observe, upon annealing, segregation and distribution of impurities, as well as of oxides and metals with respect to microstructure variation, providing an explanation for the amorphisation process.

12.
Langmuir ; 33(43): 12404-12418, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28927272

RESUMO

Titanium dioxide (TiO2) nanoparticles were synthesized by nonaqueous sol-gel route using titanium tetrachloride and benzyl alcohol as the solvent. The obtained 4 nm-sized anatase nanocrystals were readily dispersible in various polar solvents allowing for simple preparation of colloidal dispersions in water, isopropyl alcohol, dimethyl sulfoxide, and ethanol. Results showed that dispersed nanoparticles have acidic properties and exhibit positive zeta-potential which is suitable for their deposition by cathodic electrophoresis. Aluminum substrates were anodized in phosphoric acid in order to produce porous anodic oxide layers with pores ranging from 160 to 320 nm. The resulting nanopores were then filled with TiO2 nanoparticles by electrophoretic deposition. The influence of the solvent, the electric field, and the morphological characteristics of the alumina layer (i.e., barrier layer and porosity) were studied.

13.
Small ; 13(8)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27966819

RESUMO

By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

14.
Nanoscale ; 8(35): 15999-6004, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27546468

RESUMO

The mechanical properties of electrodeposited copper with highly-oriented nanoscale twins were investigated by micropillar compression. Uniform nanotwinned copper films with preferred twin orientations, either vertical or horizontal, were obtained by controlling the plating conditions. In addition, an ultrafine grained copper film was synthesized to be used as a reference sample. The mechanical properties were assessed by in situ SEM microcompression of micropillars fabricated with a focused ion beam. Results show that the mechanical properties are highly sensitive to the twin orientation. When compared to the ultrafine grained sample, an increase of 44% and 130% in stress at 5% offset strain was observed in quasi-static tests for vertically and horizontally aligned twins, respectively. Inversely strain rate jump microcompression testing reveals higher strain sensitivity for vertical twins. These observations are attributed to a change in deformation mechanism from dislocation pile-ups at the twin boundary for horizontal twins to dislocations threading inside the twin lamella for vertical twins.

15.
Phys Chem Chem Phys ; 16(47): 26375-84, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25367332

RESUMO

The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure. The major source of carbon is associated with the reaction compounds at the anode electrode, presumably decomposed glycine. Crystal structure analysis by XRD and TEM revealed that the as-deposited nc-FeCrNi deposits consist of α-Fe which transforms to γ-Fe upon thermal annealing. Nanoindentation tests showed that nc-FeCrNi exhibits higher hardness than a-FeCrNi, which is consistent with the inverse Hall-Petch behavior.

16.
Apoptosis ; 19(3): 436-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337868

RESUMO

Results obtained in various species, from mammals to invertebrates, show that arrest in the cell cycle of mature oocytes is due to a high ERK activity. Apoptosis is stimulated in these oocytes if fertilization does not occur. Our previous data suggest that apoptosis of unfertilized sea urchin eggs is the consequence of an aberrant short attempt of development that occurs if ERK is inactivated. They contradict those obtained in starfish, another echinoderm, where inactivation of ERK delays apoptosis of aging mature oocytes that are nevertheless arrested at G1 of the cell cycle as in the sea urchin. This suggests that the cell death pathway that can be activated in unfertilized eggs is not the same in sea urchin and in starfish. In the present study, we find that protein synthesis is necessary for the survival of unfertilized sea urchin eggs, contrary to starfish. We also compare the effects induced by Emetine, an inhibitor of protein synthesis, with those triggered by Staurosporine, a non specific inhibitor of protein kinase that is widely used to induce apoptosis in many types of cells. Our results indicate that the unfertilized sea urchin egg contain different mechanisms capable of leading to apoptosis and that rely or not on changes in ERK activity, acidity of intracellular organelles or intracellular Ca and pH. We discuss the validity of some methods to investigate cell death such as measurements of caspase activation with the fluorescent caspase indicator FITC-VAD-fmk or acidification of intracellular organelles, methods that may lead to erroneous conclusions at least in the sea urchin model.


Assuntos
Apoptose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Óvulo/citologia , Ouriços-do-Mar/citologia , Animais , Cálcio/metabolismo , Caspase 3/metabolismo , Emetina/farmacologia , Mitocôndrias/metabolismo , Óvulo/efeitos dos fármacos , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ouriços-do-Mar/fisiologia , Transdução de Sinais , Estaurosporina/farmacologia
17.
Autophagy ; 9(10): 1527-39, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23970301

RESUMO

A high MAPK1/3 (also known as ERK2/1, respectively) activity, preventing spontaneous activation, is essential to maintain cell cycle arrest of mature oocytes of mammals, frogs or invertebrates such as starfish. Mature oocytes would undergo a "suicide"-like cell death if not fertilized. We previously have reported that downregulation of MAPK1/3 in unfertilized sea urchin eggs induces a calcium-dependent entry into mitosis. We show here that this event is followed by a series of pseudo-mitotic cell cycles associated with transient Cai increases, preceding CASP3/caspase-3 activation and apoptosis. However, cell death was delayed after inhibition of the Cai transients or of cyclin-dependent kinases (CDK), with roscovitine. In these conditions, eggs enter an autophagy program as suggested by detection of processed LC3B by western blot, immunofluorescence and immunogold staining, visualization of autophagy vesicles by electron microscopy, and an increase in acidic vesicular organelles (AVOs). We found that bafilomycin A 1 or an association of leupeptin and pepstatin, which are widely used to study autophagy, may act upon calcium signaling or cell cycle events, respectively, and not only on autophagy events. Finally, inhibition of PtdIns 3-kinase with wortmannin or LY294002 powerfully stimulated cell death of unfertilized eggs, which suggests that this activity does not negatively regulate autophagy as is often reported, but rather stimulates survival in unfertilized eggs. We suggest that apoptosis of unfertilized eggs is the consequence of an aberrant short attempt of development that occurs if MAPK1/3 is inactivated, but these eggs can use autophagy as a survival program when the cell cycle is blocked.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Fertilização/fisiologia , Mitose/fisiologia , Óvulo , Fosfatidilinositol 3-Quinases , Ouriços-do-Mar
18.
PLoS One ; 8(6): e66113, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785474

RESUMO

Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na(+)/H(+) exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.


Assuntos
Cálcio/metabolismo , Embrião não Mamífero/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator Promotor de Maturação/metabolismo , Mitose , Ouriços-do-Mar/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Sobrevivência Celular , Quinases Ciclina-Dependentes/metabolismo , Concentração de Íons de Hidrogênio , Sistema de Sinalização das MAP Quinases , Fosforilação , Sódio/metabolismo
19.
Anticancer Res ; 33(1): 133-42, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23267138

RESUMO

Gambogic acid (GA), a natural xanthone, has a wide spectrum of pharmacological activities, including repression of telomerase expression and induction of apoptosis of cancer cells. GA has also been reported to reduce the steady-state level of thymidylate synthetase mRNA in a gastric carcinoma cell line. Therefore, it has recently emerged as a candidate for use in cancer treatment. Using hepatoma cells with a dihydrofolate reductase (DHFR) gene amplification and cells transfected with an inducible DHFR transgene, we observed a negative relationship between DHFR expression and resistance to GA. Furthermore, DHFR assays in vitro indicated that in the presence of GA, DHFR activity was slightly inhibited and the affinity of the enzyme for dihydrofolate was markedly decreased. Treatment of rat hepatoma and other human and murine cancer cell lines with methotrexate and GA revealed that the two drugs displayed a marked synergistic lethal effect.


Assuntos
Sinergismo Farmacológico , Metotrexato/administração & dosagem , Tetra-Hidrofolato Desidrogenase , Xantonas/administração & dosagem , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas do Ácido Fólico/administração & dosagem , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Ratos , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Neoplasias Pancreáticas
20.
Nanotechnology ; 23(39): 395401, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22972037

RESUMO

We investigated CdSe-sensitized TiO(2) solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO(2) gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO(2) nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( < 5 min) but also being easily scalable to the sensitization of large-area panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO(2)-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO(2) and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions-100 mW cm(-2) in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V(oc ) = 485 mV, J(sc ) = 4.26 mA cm (-2), ff=0.37).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...