Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(6): e99649, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24956106

RESUMO

Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.


Assuntos
Bacteriófagos/metabolismo , Dano ao DNA , Vetores Genéticos/metabolismo , Hibridização Genética , Lentivirus/genética , Recombinação Genética , Animais , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Linhagem Celular , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Insercional/genética , Sinais de Localização Nuclear , Reação em Cadeia da Polimerase
2.
PLoS One ; 8(8): e71363, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977029

RESUMO

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.


Assuntos
Animais Geneticamente Modificados , Heterogeneidade Genética , Guanilato Ciclase/genética , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/genética , Transgenes , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Eletrorretinografia , Genes Dominantes , Vetores Genéticos , Guanilato Ciclase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lentivirus/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Células Fotorreceptoras Retinianas Cones/enzimologia , Distrofias Retinianas/patologia , Homologia de Sequência de Aminoácidos , Índice de Gravidade de Doença , Suínos/genética , Acuidade Visual
3.
PLoS One ; 6(8): e23782, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21901134

RESUMO

In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.


Assuntos
Vetores Genéticos/genética , Lentivirus/genética , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/terapia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Gliose/metabolismo , Gliose/patologia , Gliose/terapia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Transdução Genética , cis-trans-Isomerases , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
4.
Genet Vaccines Ther ; 9(1): 1, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21205311

RESUMO

BACKGROUND: The efficacy and biosafety of lentiviral gene transfer is influenced by the design of the vector. To this end, properties of lentiviral vectors can be modified by using cis-acting elements such as the modification of the U3 region of the LTR, the incorporation of the central flap (cPPT-CTS) element, or post-transcriptional regulatory elements such as the woodchuck post-transcriptional regulatory element (WPRE). Recently, several studies evaluated the influence of the incorporation of insulators into the integrating lentiviral vector genome on transgene expression level and position effects. METHODS: In the present study, the influence of the matrix attachment region (MAR) of the mouse immunoglobulin-κ (Ig-κ) or the chicken lysozyme (ChL) gene was studied on three types of HIV-1-derived lentiviral vectors: self-inactivating (SIN) lentiviral vectors (LV), double-copy lentiviral vectors (DC) and non-integrating lentiviral vectors (NILVs) in different cell types: HeLa, HEK293T, NIH-3T3, Raji, and T Jurkat cell lines and primary neural progenitors. RESULTS AND DISCUSSION: Our results demonstrate that the Ig-κ MAR in the context of LV slightly increases transduction efficiency only in Hela, NIH-3T3 and Jurkat cells. In the context of double-copy lentiviral vectors, the Ig-κ MAR has no effect or even negatively influences transduction efficiency. In the same way, in the context of non-integrating lentiviral vectors, the Ig-κ MAR has no effect or even negatively influences transduction efficiency, except in differentiated primary neural progenitor cells.The ChL MAR in the context of integrating and non-integrating lentiviral vectors shows no effect or a decrease of transgene expression in all tested conditions. CONCLUSIONS: This study demonstrates that MAR sequences not necessarily increase transgene expression and that the effect of these sequences is probably context dependent and/or vector dependent. Thus, this study highlights the importance to consider a MAR sequence in a given context. Moreover, other recent reports pointed out the potential effects of random integration of insulators on the expression level of endogenous genes. Taken together, these results show that the use of an insulator in a vector for gene therapy must be well assessed in the particular therapeutic context that it will be used for, and must be balanced with its potential genotoxic effects.

5.
Curr Gene Ther ; 8(6): 430-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19075626

RESUMO

Lentiviral vectors are among the most efficient gene transfer tools for dividing and non-dividing cells. However, insertional mutagenesis has been observed in clinical trials with oncoretroviral vectors and this has prompted detailed study of genotoxicty of all integrating vectors. For many applications, avoiding integration is the most straightforward approach to overcome this problem and is facilitated by the extensive studies of the integrating mechanisms of lentiviruses. Indeed, non-integrating lentiviral vectors have been developed by mutating the integrase gene or by modifying the attachment sequences of the LTRs. In this review, we first consider on the toxicity associated with integration and on lentivirus integrase biology, and discuss the implications of integrase mutant studies for the development of non-integrating lentiviral vectors. We review published data concerning non-integrating lentiviral vectors with particular focus on their residual integration and transgene expression efficiency. Finally, the latest advances in the development of genetic engineering tools derived from non-integrating lentiviral vectors are presented.


Assuntos
Terapia Genética/métodos , Integrase de HIV/genética , Integrases/genética , Lentivirus/genética , Linhagem Celular , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Mutação , Plasmídeos/metabolismo , Edição de RNA
6.
Mol Ther ; 15(4): 687-97, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17299402

RESUMO

Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.


Assuntos
Lentivirus/genética , NF-kappa B/antagonistas & inibidores , Neuralgia/terapia , Nervo Isquiático/lesões , Medula Espinal/fisiopatologia , Animais , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Hiperalgesia/terapia , Proteínas I-kappa B/genética , Proteínas I-kappa B/fisiologia , Interleucina-6/genética , Inibidor de NF-kappaB alfa , NF-kappa B/fisiologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Neuroglia/fisiologia , Óxido Nítrico Sintase Tipo II/genética , Ratos , Nervo Isquiático/fisiopatologia
7.
Mol Ther ; 15(4): 687-697, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192702

RESUMO

Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury.

8.
Proc Natl Acad Sci U S A ; 103(47): 17684-9, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17095605

RESUMO

Lentivirus-derived vectors are among the most promising viral vectors for gene therapy currently available, but their use in clinical practice is limited by the associated risk of insertional mutagenesis. We have overcome this problem by developing a nonintegrative lentiviral vector derived from HIV type 1 with a class 1 integrase (IN) mutation (replacement of the 262RRK motif by AAH). We generated and characterized HIV type 1 vectors carrying this deficient enzyme and expressing the GFP or neomycin phosphotransferase transgene (NEO) under control of the immediate early promoter of human CMV. These mutant vectors efficiently transduced dividing cell lines and nondividing neural primary cultures in vitro. After transduction, transient GFP fluorescence was observed in dividing cells, whereas long-term GFP fluorescence was observed in nondividing cells, consistent with the viral genome remaining episomal. Moreover, G418 selection of cells transduced with vectors expressing the NEO gene showed that residual integration activity was lower than that of the intact IN by a factor of 500-1,250. These nonintegrative vectors were also efficient in vivo, allowing GFP expression in mouse brain cells after the stereotactic injection of IN-deficient vector particles. Thus, we have developed a generation of lentiviral vectors with a nonintegrative phenotype of great potential value for secure viral gene transfer in clinical applications.


Assuntos
Vetores Genéticos/metabolismo , Integrases/metabolismo , Lentivirus , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Genoma Viral , HIV-1/enzimologia , HIV-1/genética , Humanos , Integrases/genética , Lentivirus/enzimologia , Lentivirus/genética , Camundongos , Plasmídeos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...