Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 48(20): 6777-6786, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31020979

RESUMO

A series of ferrocenylphosphine-stabilized rhodium nanoparticles has been prepared in one pot from the organometallic [Rh(η3-C3H5)3] precursor. This complex has been decomposed by hydrogen treatment (3 bar) in dichloromethane in the presence of five different ferrocene-based phosphine ligands. Very small rhodium nanoparticles in the size range of 1.1-1.7 nm have been obtained. These nanoparticles have shown activity in a model catalytic reaction, namely the hydrogenation of styrene. These results evidence that the metal surface is not blocked despite the steric bulk of the stabilizing ligands. Moreover, certain selectivity has been observed depending on the ligand employed. To the best of our knowledge, such a type of compound has not yet been used for stabilizing metal nanoparticles and our findings highlight the interest to do so.

2.
Chem Commun (Camb) ; 53(85): 11713-11716, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29022600

RESUMO

A porous Ru nanomaterial exhibits high electrocatalytic performance and excellent durability for the hydrogen evolution reaction (HER) under both acidic and neutral conditions. It displays a low overpotential of 83 mV at a current density of 10 mA cm-2 and an excellent durability up to 12 h in 0.5 M H2SO4.

3.
Chem Sci ; 8(4): 2931-2941, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451359

RESUMO

Ligand control of metal nanoparticles (MNPs) is rapidly gaining importance as ligands can stabilize the MNPs and regulate their catalytic properties. Herein we report the first example of Pt NPs ligated by imidazolium-amidinate ligands that bind strongly through the amidinate anion to the platinum surface atoms. The binding was established by 15N NMR spectroscopy, a precedent for nitrogen ligands on MNPs, and XPS. Both monodentate and bidentate coordination modes were found. DFT showed a high bonding energy of up to -48 kcal mol-1 for bidentate bonding to two adjacent metal atoms, which decreased to -28 ± 4 kcal mol-1 for monodentate bonding in the absence of impediments by other ligands. While the surface is densely covered with ligands, both IR and 13C MAS NMR spectra proved the adsorption of CO on the surface and thus the availability of sites for catalysis. A particle size dependent Knight shift was observed in the 13C MAS NMR spectra for the atoms that coordinate to the surface, but for small particles, ∼1.2 nm, it almost vanished, as theory for MNPs predicts; this had not been experimentally verified before. The Pt NPs were found to be catalysts for the hydrogenation of ketones and a notable ligand effect was observed in the hydrogenation of electron-poor carbonyl groups. The catalytic activity is influenced by remote electron donor/acceptor groups introduced in the aryl-N-substituents of the amidinates; p-anisyl groups on the ligand gave catalysts several times faster the ligand containing p-chlorophenyl groups.

4.
Dalton Trans ; 45(44): 17782-17791, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27767201

RESUMO

The solution synthesis of rhodium nanoparticles (Rh NPs) was achieved from the organometallic complex [Rh(η3-C3H5)3] under mild reaction conditions in the presence of a polymer (PVP), a monophosphine (PPh3) and a diphosphine (dppb) as a stabilizer, leading to very small Rh NPs of 2.2, 1.3 and 1.7 nm mean size, with PVP, PPh3 and dppb, respectively. The surface properties of these nanoparticles were compared using a model catalysis reaction namely, hydrogenation of cyclohexene, first under colloidal conditions and then under supported conditions after their immobilization onto an amino functionalized silica-coated magnetite support. PVP-stabilized Rh NPs were the most active catalyst whatever the catalytic conditions as a result of a strong coordination of the phosphine ligands at the metal surface that blocks some surface atoms even after several recycles of the supported nanocatalysts and limit the reactivity of the metallic surface.

5.
Chem Commun (Camb) ; 52(26): 4768-71, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26934988

RESUMO

The synthesis and catalytic activity of long-chain NHC-stabilized RuNPs are presented. Full characterization of these novel nanostructures including surface state studies show that the ligand influences the number and the location of Ru active sites which impacts the NP catalytic activity, especially in hydrogenation reactions. The high stability and versatility of these nanosystems make them successful catalysts for both oxidation and hydrogenation reactions that can even be performed successively in a one pot-fashion.

6.
Chem Commun (Camb) ; 51(22): 4647-50, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25690829

RESUMO

The betaine adduct of N-heterocyclic carbene and carbodiimide (ICy·((p-tol))NCN) was found to be a very efficient ligand to prepare very small (1-1.3 nm) ruthenium nanoparticles (RuNPs). The coordination of the ligand on the metal surface takes place through the carbodiimide moiety. The resulting RuNPs led to decarbonylation of THF and showed size selectivity for styrene hydrogenation.

7.
Dalton Trans ; (12): 2142-56, 2009 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-19274293

RESUMO

Structural and spectroscopic properties of tetranuclear ruthenium hydrido clusters, and to a less extent, of hexanuclear ruthenium hydrido clusters, are investigated theoretically. Some of these (H)(n)Ru(k)(L)(m) (k = 4, 6) clusters were experimentally synthesized and characterized. Non-existing structures are also considered in order to examine the role of ligands on their structure, vibrational spectra and (1)H NMR chemical shifts. The calculated properties are found in very good agreement with experimental data, when available. Beyond the intrinsic interest elicited by transition metal clusters, these compounds are also considered in this paper as relevant to diamagnetic ruthenium nanoparticles as well as building blocks of hcp surfaces, which is the ruthenium nanoparticle lattice. On the basis of the very good agreement between experiments and theory, the structural and spectroscopic properties of several model clusters are also predicted in order to bring additional data which may help to analyze the spectral signature of ruthenium nanoparticles. A particular emphasis is put on (1)H NMR, which is of high practical importance for characterizing the presence of hydrides in ruthenium clusters and nanoparticles. Several topics are discussed: the structural preference of surface hydrides for terminal-, edge-bridging or face-capping coordination modes, hydrides adsorption energies, the possible presence of interstitial hydrogen atoms, the dependence of (1)H chemical shifts on ligands and on electron counting.

8.
J Am Chem Soc ; 123(31): 7584-93, 2001 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-11480979

RESUMO

The decomposition of the ruthenium precursor Ru(COD)(COT) (1, COD = 1,5-cyclooctadiene; COT = 1,3,5-cyclooctatriene) in mild conditions (room temperature, 1--3 bar H(2)) in THF leads, in the presence of a stabilizer (polymer or ligand), to nanoparticles of various sizes and shapes. In THF and in the presence of a polymer matrix (Ru/polymer = 5%), crystalline hcp particles of uniform mean size (1.1 nm) homogeneously dispersed in the polymer matrix and agglomerated hcp particles (1.7 nm) were respectively obtained in poly(vinylpyrrolidone) and cellulose acetate. The same reaction, carried out using various concentrations relative to ruthenium of alkylamines or alkylthiols as stabilizers (L = C(8)H(17)NH(2), C(12)H(25)NH(2), C(16)H(33)NH(2), C(8)H(17)SH, C(12)H(25)SH, or C(16)H(33)SH), leads to agglomerated particles (L = thiol) or particles dispersed in the solution (L = amine), both displaying a mean size near 2--3 nm and an hcp structure. In the case of amine ligands, the particles are generally elongated and display a tendency to form worm- or rodlike structures at high amine concentration. This phenomenon is attributed to a rapid amine ligand exchange at the surface of the particle as observed by (13)C NMR. In contrast, the particles stabilized by C(8)H(17)SH are not fluxional, but a catalytic transformation of thiols into disulfides has been observed which involves oxidative addition of thiols on the ruthenium surface. All colloids were characterized by microanalysis, infrared spectroscopy after CO adsorption, high-resolution electron microscopy, and wide-angle X-ray scattering.

9.
Angew Chem Int Ed Engl ; 38(24): 3736-3738, 1999 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-10649342

RESUMO

Soluble ruthenium nanoparticles of uniform size (see picture) with a porous spongelike structure were obtained by the reaction of [Ru(C(8)H(10))(C(8)H(12))] with H(2) in methanol or THF/methanol. The particle size can be controlled in the range 15-100 nm by varying the MeOH/THF ratio. The particles catalyze benzene hydrogenation without modification of their size or structure. Their formation is proposed to occur in the droplets of a nanosized emulsion, which act as nanoreactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...