Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 10829, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346189

RESUMO

The study of primary glucagon-secreting α-cells is hampered by their low abundance and scattered distribution in rodent pancreatic islets. We have designed a double-stranded adeno-associated virus containing a rat proglucagon promoter (700 bp) driving enhanced green fluorescent protein (AAV GCG-EGFP), to specifically identify α-cells. The administration of AAV GCG-EGFP by intraperitoneal or intraductal injection led to EGFP expression selectively in the α-cell population. AAV GCG-EGFP delivery to mice followed by islet isolation, dispersion and separation by FACS for EGFP resulted in an 86% pure population of α-cells. Furthermore, the administration of AAV GCG-EGFP at various doses to adult wild type mice did not significantly alter body weight, blood glucose, plasma insulin or glucagon levels, glucose tolerance or arginine tolerance. In vitro experiments in transgene positive α-cells demonstrated that EGFP expression did not alter the intracellular Ca2+ pattern in response to glucose or adrenaline. This approach may be useful for studying purified primary α-cells and for the in vivo delivery of other genes selectively to α-cells to further probe their function or to manipulate them for therapeutic purposes.


Assuntos
Dependovirus , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Proteínas de Fluorescência Verde , Animais , Glicemia , Peso Corporal/fisiologia , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ratos
2.
Cardiovasc Res ; 96(3): 372-80, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22869620

RESUMO

AIMS: The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death. Embryonic stem-cell derived cardiomyocytes lacking Ryr2 display slower beating rates, but no supporting in vivo evidence has been presented. The aim of the present study was to test the hypothesis that RYR2 loss-of-function would reduce heart rate and rhythmicity in vivo. METHODS AND RESULTS: We generated inducible, tissue-specific Ryr2 knockout mice with acute ∼50% loss of RYR2 protein in the heart but not in other tissues. Echocardiography, working heart perfusion, and in vivo ECG telemetry demonstrated that deletion of Ryr2 was sufficient to cause bradycardia and arrhythmia. Our results also show that cardiac Ryr2 knockout mice exhibit functional and structural hallmarks of heart failure, including sudden cardiac death. CONCLUSION: These results illustrate that the RYR2 channel plays an essential role in pacing heart rate. Moreover, we find that RYR2 loss-of-function can lead to fatal arrhythmias typically associated with gain-of-function mutations. Given that RYR2 levels can be reduced in pathological conditions, including heart failure and diabetic cardiomyopathy, we predict that RYR2 loss contributes to disease-associated bradycardia, arrhythmia, and sudden death.


Assuntos
Arritmias Cardíacas/metabolismo , Relógios Biológicos , Frequência Cardíaca , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Débito Cardíaco , Morte Súbita Cardíaca/etiologia , Regulação para Baixo , Eletrocardiografia Ambulatorial/métodos , Acoplamento Excitação-Contração , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Telemetria , Fatores de Tempo , Ultrassonografia , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...