Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 33(11): 2138-2146, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36166416

RESUMO

Sub-nanometer gold clusters are promising size- and composition-tunable materials that may be used for advanced technological applications such as catalysis, energy generation, and microelectronics. Synthesis and characterization of phosphine ligated gold clusters containing different ligands provide insight into how steric and electronic effects resulting from changes in chemical functionality influence cluster size, stability, and formation in solution. Herein, we demonstrate that synthesizing gold clusters using two different diphosphines in solution at the same time results in a broad distribution of novel mixed-ligand clusters. In comparison, adding a second diphosphine to a solution of gold clusters presynthesized with another diphosphine does not result in extensive formation of mixed-ligand species. Utilizing high-mass resolution electrospray ionization mass spectrometry, we determined novel cluster compositions and observed size-dependent trends in gold clusters that undergo ligand exchange forming mixed diphosphine species. Adjacent peaks in the mass spectra, separated by characteristic mass-to-charge ratios, provide evidence for multiple 1,3-bis(diphenylphosphino)propane (L3) and 1,5-bis(diphenylphosphino)pentane (L5) ligands on cationic clusters containing 8, 10, 11, and 22 gold atoms. Energy-resolved collision-induced dissociation experiments provide qualitative insight into how different diphosphine ligands affect the relative stability of specific size gold clusters. Our results indicate that mixed-ligand clusters containing both L3 and L5 are generally more stable than their single ligand counterparts containing either L3 or L5. These molecular-level insights will facilitate the rational and scalable synthesis of gold clusters for targeted applications.

3.
J Am Chem Soc ; 141(36): 14317-14328, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31390860

RESUMO

The hydrogenation of CO2 in the presence of amines to formate, formamides, and methanol (MeOH) is a promising approach to streamlining carbon capture and recycling. To achieve this, understanding how catalyst design impacts selectivity and performance is critical. Herein we describe a thorough thermochemical analysis of the (de)hydrogenation catalyst, (PNP)Ru-Cl (PNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine; Ru = Ru(CO)(H)) and correlate our findings to catalyst performance. Although this catalyst is known to hydrogenate CO2 to formate with a mild base, we show that MeOH is produced when using a strong base. Consistent with pKa measurements, the requirement for a strong base suggests that the deprotonation of a six-coordinate Ru species is integral to the catalytic cycle that produces MeOH. Our studies also indicate that the concentration of MeOH produced is independent of catalyst concentration, consistent with a deactivation pathway that is dependent on methanol concentration, not equivalency. Our temperature-dependent equilibrium studies of the dearomatized congener, (*PNP)Ru, with various H-X species (to give (PNP)Ru-X; X = H, OH, OMe, OCHO, OC(O)NMe2) reveal that formic acid equilibrium is approximately temperature-independent; relative to H2, it is more favored at elevated temperatures. We also measure the hydricity of (PNP)Ru-H in THF and show how subsequent coordination of the substrate can impact the apparent hydricity. The implications of this work are broadly applicable to hydrogenation and dehydrogenation catalysis and, in particular, to those that can undergo metal-ligand cooperativity (MLC) at the catalyst. These results serve to benchmark future studies by allowing comparisons to be made among catalysts and will positively impact rational catalyst design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...