Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352387

RESUMO

In a recent preprint, Park, Metzger, and Thornton reanalyze 20 empirical protein sequence-function landscapes using a "reference-free analysis" (RFA) method they recently developed. They argue that these empirical landscapes are simpler and less epistatic than earlier work suggested, and attribute the difference to limitations of the methods used in the original analyses of these landscapes, which they claim are more sensitive to measurement noise, missing data, and other artifacts. Here, we show that these claims are incorrect. Instead, we find that the RFA method introduced by Park et al. is exactly equivalent to the reference-based least-squares methods used in the original analysis of many of these empirical landscapes (and also equivalent to a Hadamard-based approach they implement). Because the reanalyzed and original landscapes are in fact identical, the different conclusions drawn by Park et al. instead reflect different interpretations of the parameters describing the inferred landscapes; we argue that these do not support the conclusion that epistasis plays only a small role in protein sequence-function landscapes.

2.
Trends Immunol ; 44(5): 384-396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024340

RESUMO

Our immune systems constantly coevolve with the pathogens that challenge them, as pathogens adapt to evade our defense responses, with our immune repertoires shifting in turn. These coevolutionary dynamics take place across a vast and high-dimensional landscape of potential pathogen and immune receptor sequence variants. Mapping the relationship between these genotypes and the phenotypes that determine immune-pathogen interactions is crucial for understanding, predicting, and controlling disease. Here, we review recent developments applying high-throughput methods to create large libraries of immune receptor and pathogen protein sequence variants and measure relevant phenotypes. We describe several approaches that probe different regions of the high-dimensional sequence space and comment on how combinations of these methods may offer novel insight into immune-pathogen coevolution.


Assuntos
Adaptação Fisiológica , Fenótipo , Genótipo
3.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36803543

RESUMO

The Omicron BA.1 variant of SARS-CoV-2 escapes convalescent sera and monoclonal antibodies that are effective against earlier strains of the virus. This immune evasion is largely a consequence of mutations in the BA.1 receptor binding domain (RBD), the major antigenic target of SARS-CoV-2. Previous studies have identified several key RBD mutations leading to escape from most antibodies. However, little is known about how these escape mutations interact with each other and with other mutations in the RBD. Here, we systematically map these interactions by measuring the binding affinity of all possible combinations of these 15 RBD mutations (215=32,768 genotypes) to 4 monoclonal antibodies (LY-CoV016, LY-CoV555, REGN10987, and S309) with distinct epitopes. We find that BA.1 can lose affinity to diverse antibodies by acquiring a few large-effect mutations and can reduce affinity to others through several small-effect mutations. However, our results also reveal alternative pathways to antibody escape that does not include every large-effect mutation. Moreover, epistatic interactions are shown to constrain affinity decline in S309 but only modestly shape the affinity landscapes of other antibodies. Together with previous work on the ACE2 affinity landscape, our results suggest that the escape of each antibody is mediated by distinct groups of mutations, whose deleterious effects on ACE2 affinity are compensated by another distinct group of mutations (most notably Q498R and N501Y).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Soroterapia para COVID-19 , Mutação , SARS-CoV-2/genética , Evolução Molecular
4.
Elife ; 122023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625542

RESUMO

Broadly neutralizing antibodies (bnAbs) that neutralize diverse variants of a particular virus are of considerable therapeutic interest. Recent advances have enabled us to isolate and engineer these antibodies as therapeutics, but eliciting them through vaccination remains challenging, in part due to our limited understanding of how antibodies evolve breadth. Here, we analyze the landscape by which an anti-influenza receptor binding site (RBS) bnAb, CH65, evolved broad affinity to diverse H1 influenza strains. We do this by generating an antibody library of all possible evolutionary intermediates between the unmutated common ancestor (UCA) and the affinity-matured CH65 antibody and measure the affinity of each intermediate to three distinct H1 antigens. We find that affinity to each antigen requires a specific set of mutations - distributed across the variable light and heavy chains - that interact non-additively (i.e., epistatically). These sets of mutations form a hierarchical pattern across the antigens, with increasingly divergent antigens requiring additional epistatic mutations beyond those required to bind less divergent antigens. We investigate the underlying biochemical and structural basis for these hierarchical sets of epistatic mutations and find that epistasis between heavy chain mutations and a mutation in the light chain at the VH-VL interface is essential for binding a divergent H1. Collectively, this is the first work to comprehensively characterize epistasis between heavy and light chain mutations and shows that such interactions are both strong and widespread. Together with our previous study analyzing a different class of anti-influenza antibodies, our results implicate epistasis as a general feature of antibody sequence-affinity landscapes that can potentiate and constrain the evolution of breadth.


Assuntos
Anticorpos Neutralizantes , Influenza Humana , Humanos , Sítios de Ligação , Ligação Proteica , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza
5.
Nat Commun ; 13(1): 7011, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384919

RESUMO

The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the earlier SARS-CoV-2 variants, BA.1 has many mutations, some of which are known to enable antibody escape. Many of these antibody-escape mutations individually decrease the spike receptor-binding domain (RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness and evolution of the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 arising from a chronic infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Peptidil Dipeptidase A/metabolismo , Epistasia Genética , COVID-19/genética
6.
PLoS Biol ; 20(2): e3001569, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180219

RESUMO

The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.


Assuntos
Infecções por HIV , Proteostase , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Infecções por HIV/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Resposta a Proteínas não Dobradas
7.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849811

RESUMO

Spontaneous whole-genome duplication, or autodiploidization, is a common route to adaptation in experimental evolution of haploid budding yeast populations. The rate at which autodiploids fix in these populations appears to vary across strain backgrounds, but the genetic basis of these differences remains poorly characterized. Here, we show that the frequency of autodiploidization differs dramatically between two closely related laboratory strains of Saccharomyces cerevisiae, BY4741 and W303. To investigate the genetic basis of this difference, we crossed these strains to generate hundreds of unique F1 segregants and tested the tendency of each segregant to autodiplodize across hundreds of generations of laboratory evolution. We find that variants in the SSD1 gene are the primary genetic determinant of differences in autodiploidization. We then used multiple laboratory and wild strains of S. cerevisiae to show that clonal populations of strains with a functional copy of SSD1 autodiploidize more frequently in evolution experiments, while knocking out this gene or replacing it with the W303 allele reduces autodiploidization propensity across all genetic backgrounds tested. These results suggest a potential strategy for modifying rates of spontaneous whole-genome duplications in laboratory evolution experiments in haploid budding yeast. They may also have relevance to other settings in which eukaryotic genome stability plays an important role, such as biomanufacturing and the treatment of pathogenic fungal diseases and cancers.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Genoma Fúngico , Instabilidade Genômica , Haploidia , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Elife ; 102021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596043

RESUMO

Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time.


Assuntos
Adaptação Biológica , Aptidão Genética , Pleiotropia Genética/fisiologia , Saccharomyces cerevisiae/fisiologia , Aclimatação , Diploide , Meio Ambiente , Haploidia , Saccharomyces cerevisiae/genética
9.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491198

RESUMO

Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses.


Assuntos
Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/imunologia , Orthomyxoviridae/imunologia , Animais , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/genética , Linhagem Celular , Epistasia Genética , Humanos , Vacinas contra Influenza/imunologia , Mutação , Orthomyxoviridae/genética
10.
Elife ; 102021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33464204

RESUMO

Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.


Assuntos
Adaptação Biológica , Evolução Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/fisiologia , Diploide , Taxa de Mutação , Saccharomyces cerevisiae/genética
11.
PLoS Biol ; 16(9): e3000008, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222731

RESUMO

The threat of viral pandemics demands a comprehensive understanding of evolution at the host-pathogen interface. Here, we show that the accessibility of adaptive mutations in influenza nucleoprotein at fever-like temperatures is mediated by host chaperones. Particularly noteworthy, we observe that the Pro283 nucleoprotein variant, which (1) is conserved across human influenza strains, (2) confers resistance to the Myxovirus resistance protein A (MxA) restriction factor, and (3) critically contributed to adaptation to humans in the 1918 pandemic influenza strain, is rendered unfit by heat shock factor 1 inhibition-mediated host chaperone depletion at febrile temperatures. This fitness loss is due to biophysical defects that chaperones are unavailable to address when heat shock factor 1 is inhibited. Thus, influenza subverts host chaperones to uncouple the biophysically deleterious consequences of viral protein variants from the benefits of immune escape. In summary, host proteostasis plays a central role in shaping influenza adaptation, with implications for the evolution of other viruses, for viral host switching, and for antiviral drug development.


Assuntos
Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Sistema Imunitário/virologia , Imunidade Inata , Chaperonas Moleculares/metabolismo , Orthomyxoviridae/imunologia , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Análise Mutacional de DNA , Cães , Humanos , Células Madin Darby de Rim Canino , Modelos Biológicos , Proteínas de Resistência a Myxovirus/metabolismo , Nucleoproteínas/química , Estrutura Secundária de Proteína , Temperatura , Proteínas Virais/química
12.
Elife ; 72018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30188321

RESUMO

We systematically and quantitatively evaluate whether endoplasmic reticulum (ER) proteostasis factors impact the mutational tolerance of secretory pathway proteins. We focus on influenza hemaggluttinin (HA), a viral membrane protein that folds in the host's ER via a complex pathway. By integrating chemical methods to modulate ER proteostasis with deep mutational scanning to assess mutational tolerance, we discover that upregulation of ER proteostasis factors broadly enhances HA mutational tolerance across diverse structural elements. Remarkably, this proteostasis network-enhanced mutational tolerance occurs at the same sites where mutational tolerance is most reduced by propagation at fever-like temperature. These findings have important implications for influenza evolution, because influenza immune escape is contingent on HA possessing sufficient mutational tolerance to evade antibodies while maintaining the capacity to fold and function. More broadly, this work provides the first experimental evidence that ER proteostasis mechanisms define the mutational tolerance and, therefore, the evolution of secretory pathway proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Mutação , Proteostase , Temperatura , Sequência de Aminoácidos , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Via Secretória/genética , Resposta a Proteínas não Dobradas/genética
13.
Elife ; 62017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949290

RESUMO

Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host-pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance.


Assuntos
Aptidão Genética , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H3N2/genética , Mutação , Proteostase , Proteínas Virais/genética , Animais , Cães , Evolução Molecular , Vírus da Influenza A Subtipo H3N2/fisiologia , Células Madin Darby de Rim Canino , Seleção Genética , Proteínas Virais/metabolismo
15.
Bioorg Med Chem ; 23(14): 3948-56, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593096

RESUMO

Optimization of the sulfonamide-based kappa opioid receptor (KOR) antagonist probe molecule ML140 through constraint of the sulfonamide nitrogen within a tetrahydroisoquinoline moiety afforded a marked increase in potency. This strategy, when combined with additional structure-activity relationship exploration, has led to a compound only six-fold less potent than norBNI, a widely utilized KOR antagonist tool compound, but significantly more synthetically accessible. The new optimized probe is suitably potent for use as an in vivo tool to investigate the therapeutic potential of KOR antagonists.


Assuntos
Benzamidas/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Animais , Arrestinas/metabolismo , Benzamidas/química , Células CHO , Técnicas de Química Sintética , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Naltrexona/análogos & derivados , Naltrexona/química , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides kappa/genética , Sulfonamidas/química , Tetra-Hidroisoquinolinas/química , beta-Arrestinas
16.
Nat Methods ; 11(5): 535-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681694

RESUMO

Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the capillary feeder (CAFE), food labeling with a radioactive tracer or colorimetric dye and observations of proboscis extension (PE). We show that the CAFE and radioisotope labeling provide the most consistent results, have the highest sensitivity and can resolve differences in feeding that dye labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of methods for measuring food intake will greatly advance Drosophila studies of nutrition, behavior and disease.


Assuntos
Comportamento Animal , Drosophila melanogaster/fisiologia , Ingestão de Alimentos , Comportamento Alimentar , Animais , Colorimetria , Feminino , Genética Comportamental/métodos , Masculino , Traçadores Radioativos , Reprodutibilidade dos Testes , Projetos de Pesquisa , Fatores Sexuais
17.
J Biol Chem ; 288(51): 36703-16, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24187130

RESUMO

The kappa opioid receptor (KOR) is widely expressed in the CNS and can serve as a means to modulate pain perception, stress responses, and affective reward states. Therefore, the KOR has become a prominent drug discovery target toward treating pain, depression, and drug addiction. Agonists at KOR can promote G protein coupling and ßarrestin2 recruitment as well as multiple downstream signaling pathways, including ERK1/2 MAPK activation. It has been suggested that the physiological effects of KOR activation result from different signaling cascades, with analgesia being G protein-mediated and dysphoria being mediated through ßarrestin2 recruitment. Dysphoria associated with KOR activation limits the therapeutic potential in the use of KOR agonists as analgesics; therefore, it may be beneficial to develop KOR agonists that are biased toward G protein coupling and away from ßarrestin2 recruitment. Here, we describe two classes of biased KOR agonists that potently activate G protein coupling but weakly recruit ßarrestin2. These potent and functionally selective small molecule compounds may prove to be useful tools for refining the therapeutic potential of KOR-directed signaling in vivo.


Assuntos
Receptores Opioides kappa/agonistas , Animais , Arrestinas/metabolismo , Células CHO , Cricetinae , Cricetulus , Descoberta de Drogas , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinolonas/síntese química , Quinolonas/farmacologia , Receptores Opioides kappa/metabolismo , Transdução de Sinais , Triazóis/síntese química , Triazóis/farmacologia , beta-Arrestinas
18.
J Pept Sci ; 19(1): 16-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193084

RESUMO

α-Conotoxins are peptide neurotoxins that selectively inhibit various subtypes of nicotinic acetylcholine receptors. They are important research tools for studying numerous pharmacological disorders, with profound potential for developing drug leads for treating pain, tobacco addiction, and other conditions. They are characterized by the presence of two disulfide bonds connected in a globular arrangement, which stabilizes a bioactive helical conformation. Despite extensive structure-activity relationship studies that have produced α-conotoxin analogs with increased potency and selectivity towards specific nicotinic acetylcholine receptor subtypes, the efficient production of diversity-oriented α-conotoxin combinatorial libraries has been limited by inefficient folding and purification procedures. We have investigated the optimized conditions for the reliable folding of α-conotoxins using simplified oxidation procedures for use in the accelerated production of synthetic combinatorial libraries of α-conotoxins. To this end, the effect of co-solvent, redox reagents, pH, and temperature on the proportion of disulfide bond isomers was determined for α-conotoxins exhibiting commonly known Cys loop spacing frameworks. In addition, we have developed high-throughput 'semi-purification' methods for the quick and efficient parallel preparation of α-conotoxin libraries for use in accelerated structure-activity relationship studies. Our simplified procedures represent an effective strategy for the preparation of large arrays of correctly folded α-conotoxin analogs and permit the rapid identification of active hits directly from high-throughput pharmacological screening assays.


Assuntos
Conotoxinas/química , Dobramento de Proteína , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
19.
J Feline Med Surg ; 13(7): 526-31, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21704902

RESUMO

UNLABELLED: CASE PRESENTATION AND ASSESSMENT: A 3-month-old female Cornish Rex kitten was found to have non-painful swelling of the carpal and tarsal regions when presented for routine neutering. The kitten was smaller in stature and less active than its siblings and, according to the owner, had a bunny-hopping gait, was reluctant to climb stairs and strained during defecation. Radiography of the affected limbs and a subsequent radiographic survey of the entire skeleton demonstrated features consistent with rickets. The three littermates were clinically and radiographically normal. As a nutritionally complete diet was being fed, it seemed most likely that the kitten had an inborn error related to vitamin D metabolism. Serum biochemistry demonstrated reduced total alkaline phosphatase activity and increased concentrations of parathyroid hormone. Concentrations of 1,25- and 25-hydroxycholecalciferol were markedly reduced, confirming the diagnosis of rickets. TREATMENT: The kitten was treated with calcitriol, administered orally once daily, and improved rapidly both clinically and radiologically. Serial laboratory studies suggested that the error in vitamin D metabolism was transient, and, at the time of writing, as an adult, the cat appears to require no ongoing replacement calcitriol therapy. CLINICAL RELEVANCE: This case emphasises the value of examining a full 'calcium profile' via a human or veterinary reference laboratory, and a favourable prognosis in some kittens with rickets makes such investigations worthwhile. Even when finances preclude detailed investigation, trial therapy using a nutritionally complete diet and physiological doses of calcitriol or cholecalciferol is inexpensive and can produce a good response.


Assuntos
Doenças do Gato/diagnóstico , Raquitismo/veterinária , Animais , Calcitriol/uso terapêutico , Doenças do Gato/sangue , Doenças do Gato/tratamento farmacológico , Gatos , Feminino , Raquitismo/sangue , Raquitismo/diagnóstico , Raquitismo/tratamento farmacológico , Resultado do Tratamento , Vitamina D/sangue , Vitaminas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...