Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484435

RESUMO

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Bicamadas Lipídicas , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
2.
Sci Adv ; 8(7): eabl5966, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171679

RESUMO

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F1Fo-adenosine 5'-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F1 subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded Fo complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.


Assuntos
Acinetobacter baumannii , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica
3.
EMBO J ; 40(12): e107607, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018207

RESUMO

The GTPase Rab1 is a master regulator of the early secretory pathway and is critical for autophagy. Rab1 activation is controlled by its guanine nucleotide exchange factor, the multisubunit TRAPPIII complex. Here, we report the 3.7 Å cryo-EM structure of the Saccharomyces cerevisiae TRAPPIII complex bound to its substrate Rab1/Ypt1. The structure reveals the binding site for the Rab1/Ypt1 hypervariable domain, leading to a model for how the complex interacts with membranes during the activation reaction. We determined that stable membrane binding by the TRAPPIII complex is required for robust activation of Rab1/Ypt1 in vitro and in vivo, and is mediated by a conserved amphipathic α-helix within the regulatory Trs85 subunit. Our results show that the Trs85 subunit serves as a membrane anchor, via its amphipathic helix, for the entire TRAPPIII complex. These findings provide a structural understanding of Rab activation on organelle and vesicle membranes.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Proteínas rab de Ligação ao GTP/química , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteínas de Transporte Vesicular/ultraestrutura , Proteínas rab de Ligação ao GTP/ultraestrutura
4.
Curr Opin Struct Biol ; 69: 50-54, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33857720

RESUMO

Membrane proteins account for a quarter of cellular proteins, and most are synthesised at the endoplasmic reticulum (ER). Insertion and folding of polypeptides in the membrane environment is prone to error, necessitating diverse quality control systems. Recent discoveries have demonstrated how forces act on the nascent chain during insertion, and revealed new translocon components and accessories that facilitate the correct biogenesis of substrates. Our understanding of one of the best studied quality control systems-ER-associated degradation-has been advanced through new structural and functional studies of the core Hrd1 complex, and through the discovery of a new branch of this degradative pathway. New data also reveal how cells resolve clogged translocons, which would otherwise be unable to function. Finally, new work elucidates how mitochondrial tail-anchored proteins that have been mistargeted to the ER are identified and destroyed. Overall, we describe an emerging picture of an increasingly complex quality control network.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Dobramento de Proteína , Controle de Qualidade
5.
J Cell Sci ; 133(22)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247003

RESUMO

Protein synthesis is an energetically costly, complex and risky process. Aberrant protein biogenesis can result in cellular toxicity and disease, with membrane-embedded proteins being particularly challenging for the cell. In order to protect the cell from consequences of defects in membrane proteins, quality control systems act to maintain protein homeostasis. The majority of these pathways act post-translationally; however, recent evidence reveals that membrane proteins are also subject to co-translational quality control during their synthesis in the endoplasmic reticulum (ER). This newly identified quality control pathway employs components of the cytosolic ribosome-associated quality control (RQC) machinery but differs from canonical RQC in that it responds to biogenesis state of the substrate rather than mRNA aberrations. This ER-associated RQC (ER-RQC) is sensitive to membrane protein misfolding and malfunctions in the ER insertion machinery. In this Review, we discuss the advantages of co-translational quality control of membrane proteins, as well as potential mechanisms of substrate recognition and degradation. Finally, we discuss some outstanding questions concerning future studies of ER-RQC of membrane proteins.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Proteostase , Ribossomos/genética , Ribossomos/metabolismo
6.
Curr Opin Cell Biol ; 65: 96-102, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32408120

RESUMO

Misfolded and mistargeted proteins in the early secretory pathway present significant risks to the cell. A diverse and integrated network of quality control pathways protects the cell from these threats. We focus on the discovery of new mechanisms that contribute to this protective network. Biochemical and structural advances in endoplasmic reticulum targeting fidelity, and in the redistribution of mistargeted substrates are discussed. We further review new discoveries in quality control at the inner nuclear membrane in the context of orphaned subunits. We consider developments in our understanding of cargo selection for endoplasmic reticulum export. Conflicting data on quality control by cargo receptor proteins are discussed and we look to important future questions for the field.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Humanos , Modelos Biológicos , Dobramento de Proteína , Via Secretória
7.
Elife ; 92020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32459176

RESUMO

Approximately 25% of eukaryotic genes code for integral membrane proteins that are assembled at the endoplasmic reticulum. An abundant and widely conserved multi-protein complex termed EMC has been implicated in membrane protein biogenesis, but its mechanism of action is poorly understood. Here, we define the composition and architecture of human EMC using biochemical assays, crystallography of individual subunits, site-specific photocrosslinking, and cryo-EM reconstruction. Our results suggest that EMC's cytosolic domain contains a large, moderately hydrophobic vestibule that can bind a substrate's transmembrane domain (TMD). The cytosolic vestibule leads into a lumenally-sealed, lipid-exposed intramembrane groove large enough to accommodate a single substrate TMD. A gap between the cytosolic vestibule and intramembrane groove provides a potential path for substrate egress from EMC. These findings suggest how EMC facilitates energy-independent membrane insertion of TMDs, explain why only short lumenal domains are translocated by EMC, and constrain models of EMC's proposed chaperone function.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Citosol/química , Citosol/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios Proteicos , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo
8.
Curr Biol ; 30(5): 854-864.e5, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31956032

RESUMO

Cells possess multiple mechanisms that protect against the accumulation of toxic aggregation-prone proteins. Here, we identify a pre-emptive pathway that reduces synthesis of membrane proteins that have failed to properly assemble in the endoplasmic reticulum (ER). We show that loss of the ER membrane complex (EMC) or mutation of the Sec61 translocon causes reduced synthesis of misfolded forms of the yeast ABC transporter Yor1. Synthesis defects are rescued by various ribosomal mutations, as well as by reducing cellular ribosome abundance. Genetic and biochemical evidence point to a ribosome-associated quality-control pathway triggered by ribosome collisions when membrane domain insertion and/or folding fails. In support of this model, translation initiation also contributes to synthesis defects, likely by modulating ribosome abundance on the message. Examination of translation efficiency across the yeast membrane proteome revealed that polytopic membrane proteins have relatively low ribosome abundance, providing evidence for translational tuning to balance protein synthesis and folding. We propose that by modulating translation rates of poorly folded proteins, cells can pre-emptively protect themselves from potentially toxic aberrant transmembrane proteins.


Assuntos
Membranas Intracelulares/química , Proteínas de Membrana/química , Dobramento de Proteína , Ribossomos/metabolismo , Saccharomyces cerevisiae/química
9.
Science ; 349(6252): 1111-4, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26339030

RESUMO

Fusion of intracellular transport vesicles requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18-family (SM) proteins. Membrane-bridging SNARE complexes are critical for fusion, but their spontaneous assembly is inefficient and may require SM proteins in vivo. We report x-ray structures of Vps33, the SM subunit of the yeast homotypic fusion and vacuole protein-sorting (HOPS) complex, bound to two individual SNAREs. The two SNAREs, one from each membrane, are held in the correct orientation and register for subsequent complex assembly. Vps33 and potentially other SM proteins could thus act as templates for generating partially zipped SNARE assembly intermediates. HOPS was essential to mediate SNARE complex assembly at physiological SNARE concentrations. Thus, Vps33 appears to catalyze SNARE complex assembly through specific SNARE motif recognition.


Assuntos
Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...