Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Cell Dev Biol ; 9: 764725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869356

RESUMO

Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.

3.
Immunology ; 151(2): 248-260, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28211040

RESUMO

T cells play a key role in the pathogenesis of type 1 diabetes, and targeting the CD3 component of the T-cell receptor complex provides one therapeutic approach. Anti-CD3 treatment can reverse overt disease in spontaneously diabetic non-obese diabetic mice, an effect proposed to, at least in part, be caused by a selective depletion of pathogenic cells. We have used a transfer model to further investigate the effects of anti-CD3 treatment on green fluorescent protein (GFP)+ islet-specific effector T cells in vivo. The GFP expression allowed us to isolate the known effectors at different time-points during treatment to assess cell presence in various organs as well as gene expression and cytokine production. We find, in this model, that anti-CD3 treatment does not preferentially deplete the transferred effector cells, but instead inhibits their metabolic function and their production of interferon-γ. Programmed cell death protein 1 (PD-1) expression was up-regulated on the effector cells from anti-CD3-treated mice, and diabetes induced through anti-PD-L1 antibody could only be reversed with anti-CD3 antibody if the anti-CD3 treatment lasted beyond the point when the anti-PD-L1 antibody was washed out of the system. This suggests that PD-1/PD-L1 interaction plays an important role in the anti-CD3 antibody mediated protection. Our data demonstrate an additional mechanism by which anti-CD3 therapy can reverse diabetogenesis.


Assuntos
Anticorpos/imunologia , Complexo CD3/imunologia , Inflamação/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Regulação para Cima , Animais , Feminino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
4.
Exp Cell Res ; 347(2): 301-11, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539661

RESUMO

We previously demonstrated that an αvß5 integrin/FAK- mediated pathway regulated the phagocytic properties of human trabecular meshwork (HTM) cells. Here we demonstrate that this process is mediated by Rac-1 and a previously unreported signaling pathway that utilizes the Tiam1 as well as a novel ILK/RhoG/ELMO2 signaling pathway. Phagocytosis in both a TM-1 cell line and normal HTM cells was mediated by Rac1 and could be significantly decreased by >75% using the Rac1 inhibitor EHop-016. Knockdown of Rac1 in TM-1 cells also inhibited phagocytosis by 40% whereas overexpression of a constitutively active Rac1 or stimulation with PDGF increased phagocytosis by 83% and 32% respectively. Tiam1 was involved in regulating phagocytosis. Knockdown of Tiam1 inhibited phagocytosis by 72% while overexpression of Tiam1 C1199 increased phagocytosis by 75%. Other upstream effectors of Rac1 found to be involved included ELMO2, RhoG, and ILK. Knockdowns of ELMO2, ILK, and RhoG caused a reduction in phagocytosis by 51%, 55% and 46% respectively. In contrast, knockdown of Vav2 and Dock1 or overexpression of Vav2 Y159/172F did not cause a significant change in phagocytosis. These data suggest a novel link between Tiam1 and RhoG/ILK /ELMO2 pathway as upstream effectors of the Rac1-mediated phagocytic process in TM cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fagocitose , Proteínas Serina-Treonina Quinases/metabolismo , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Fagocitose/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
5.
Invest Ophthalmol Vis Sci ; 57(5): ORSFf1-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27116663

RESUMO

As applications of human pluripotent stem cells (hPSCs) continue to be refined and pursued, it is important to keep in mind that the strengths and weaknesses of this technology lie with its developmental origins. The remarkable capacity of differentiating hPSCs to recapitulate cell and tissue genesis has provided a model system to study stages of human development that were not previously amenable to investigation and experimentation. Furthermore, demonstration of developmentally appropriate, stepwise differentiation of hPSCs to specific cell types offers support for their authenticity and their suitability for use in disease modeling and cell replacement therapies. However, limitations to farming cells and tissues in an artificial culture environment, as well as the length of time required for most cells to mature, are some of the many issues to consider before using hPSCs to study or treat a particular disease. Given the overarching need to understand and modulate the dynamics of lineage-specific differentiation in stem cell cultures, this review will first examine the capacity of hPSCs to serve as models of retinal development. Thereafter, we will discuss efforts to model retinal disorders with hPSCs and present challenges that face investigators who aspire to use such systems to study disease pathophysiology and/or screen for therapeutics. We also refer readers to recent publications that provide additional insight and details on these rapidly evolving topics.


Assuntos
Células-Tronco Pluripotentes/citologia , Retina/crescimento & desenvolvimento , Doenças Retinianas , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Humanos , Modelos Biológicos , Retina/embriologia , Doenças Retinianas/metabolismo , Doenças Retinianas/fisiopatologia
6.
PLoS One ; 10(3): e0118950, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775402

RESUMO

Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and neutrophil (PMN) recruitment after corneal abrasion is beneficial to epithelial wound healing, we wanted to determine if these cells play a role in regulating keratocyte repopulation after epithelial abrasion. A 2 mm diameter central epithelial region was removed from the corneas of C57BL/6 wildtype (WT), P-selectin deficient (P-sel-/-), and CD18 hypomorphic (CD18hypo) mice using the Algerbrush II. Corneas were studied at 6h intervals out to 48h post-injury to evaluate platelet and PMN cell numbers; additional corneas were studied at 1, 4, 14, and 28 days post injury to evaluate keratocyte numbers. In WT mice, epithelial abrasion induced a loss of anterior central keratocytes and keratocyte recovery was rapid and incomplete, reaching ~70% of uninjured baseline values by 4 days post-injury but no further improvement at 28 days post-injury. Consistent with a beneficial role for platelets and PMNs in wound healing, keratocyte recovery was significantly depressed at 4 days post-injury (~30% of uninjured baseline) in P-sel-/- mice, which are known to have impaired platelet and PMN recruitment after corneal abrasion. Passive transfer of platelets from WT, but not P-sel-/-, into P-sel-/- mice prior to injury restored anterior central keratocyte numbers at 4 days post-injury to P-sel-/- uninjured baseline levels. While PMN infiltration in injured CD18hypo mice was similar to injured WT mice, platelet recruitment was markedly decreased and anterior central keratocyte recovery was significantly reduced (~50% of baseline) at 4-28 days post-injury. Collectively, the data suggest platelets and platelet P-selectin are critical for efficient keratocyte recovery after corneal epithelial abrasion.


Assuntos
Plaquetas/imunologia , Lesões da Córnea/imunologia , Lesões da Córnea/patologia , Ceratócitos da Córnea/patologia , Epitélio Corneano/patologia , Cicatrização , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Lesões da Córnea/genética , Ceratócitos da Córnea/citologia , Epitélio Corneano/citologia , Epitélio Corneano/imunologia , Epitélio Corneano/metabolismo , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Selectina-P/genética , Selectina-P/imunologia
7.
Eur J Immunol ; 41(10): 2966-76, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21792877

RESUMO

Increasingly, evidence suggests that there is a strong environmental component to the development of the autoimmune disease type 1 diabetes. Our previous data showed that NOD mice are protected from developing diabetes after infection with Salmonella typhimurium and there is some evidence that changes within the DC compartment play a crucial role in this protective effect. This paper further characterises this Salmonella-modulated protective phenotype. We find that, contrary to other infection-mediated models of type 1 diabetes protection, there was no expansion of Foxp3(+) Tregs. Furthermore, transcriptome analysis of DCs identified a distinct Salmonella-induced signature in which the inhibitory receptor PD-L1 was up-regulated. This was confirmed by flow cytometry. In vivo blockade of the PD1/PD-L1 interaction was found to ablate the protective function of Salmonella infection. These data provide evidence for a novel regulatory DC phenotype proficient at controlling autoreactive T cells for an extended duration in the NOD mouse model of diabetes.


Assuntos
Antígeno B7-H1/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Antígeno B7-H1/genética , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Ciclofosfamida/farmacologia , Células Dendríticas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/microbiologia , Citometria de Fluxo , Fatores de Transcrição Forkhead/biossíntese , Perfilação da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-2 , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Linfócitos T Reguladores/imunologia , Regulação para Cima
8.
J Immunol ; 186(6): 3373-82, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21307296

RESUMO

Plasticity within Th cell populations may play a role in enabling site-specific immune responses to infections while limiting tissue destruction. Epigenetic processes are fundamental to such plasticity; however, to date, most investigations have focused on in vitro-generated T cells. In this study, we have examined the molecular mechanisms underpinning murine Th17 plasticity in vivo by assessing H3K4 and H3K27 trimethylation marks at Tbx21, Rorc, Il17a, Ifng, and Il12rb2 loci in purified ex vivo-isolated and in vitro-generated Th17 cells. Although both populations had largely comparable epigenetic signatures, including bivalent marks at Tbx21, freshly isolated ex vivo Th17 cells displayed restricted expression from Il12rb2 due to the presence of repressive chromatin modifications. This receptor, however, could be upregulated on isolated ex vivo Th17 cells after in vitro activation or by in vivo immunization and was augmented by the presence of IFN-γ. Such activated cells could then be deviated toward a Th1-like profile. We show that IL-12 stimulation removes H3K27 trimethylation modifications at Tbx21/T-bet leading to enhanced T-bet expression with in vitro Th17 cells. Our study reveals important potential phenotypic differences between ex vivo- and in vitro-generated Th17 cells and provides mechanistic insight into Th17 cell plasticity.


Assuntos
Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Receptores de Interleucina-12/genética , Proteínas com Domínio T/genética , Células Th17/imunologia , Células Th17/metabolismo , Animais , Diferenciação Celular/genética , Polaridade Celular/genética , Polaridade Celular/imunologia , Separação Celular , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Metilação de DNA/genética , Metilação de DNA/imunologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Imunofenotipagem , Interleucina-12/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Receptores de Interleucina-12/biossíntese , Receptores de Interleucina-12/fisiologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/fisiologia , Células Th17/citologia
9.
J Immunol ; 185(5): 2754-62, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20675590

RESUMO

Zymosan is a complex fungal component shown to be capable of both promoting and suppressing the development of autoimmune disorders in mice. In this study, we show that a single injection of zymosan just prior to diabetes onset can significantly delay the progression of disease in NOD mice. Zymosan treatment of NOD mice induced the production of biologically active TGF-beta from cells infiltrating the pancreas and was associated with expansion of programmed cell death 1 ligand 1(+)TGF-beta(+) macrophages and Foxp3(+) regulatory T cells in vivo. Neutralization of either TGF-beta or programmed cell death 1 ligand 1 abrogated the protective effects of zymosan. Zymosan acted through TLR2 as well as ERK and p38 MAPK to induce macrophage secretion of TGF-beta and promotion of Foxp3(+) regulatory T cells in vitro and in vivo.


Assuntos
Antígeno B7-1/fisiologia , Diferenciação Celular/imunologia , Proliferação de Células , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Glicoproteínas de Membrana/fisiologia , Peptídeos/fisiologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/fisiologia , Zimosan/administração & dosagem , Animais , Antígeno B7-H1 , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 1/patologia , Relação Dose-Resposta Imunológica , Feminino , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Vison , Linfócitos T Reguladores/patologia , Zimosan/uso terapêutico
10.
Rev Diabet Stud ; 6(2): 97-103, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19806239

RESUMO

Type 1 diabetes development in NOD mice appears to require both CD4(+) and CD8(+) T cells. However, there are some situations where it has been suggested that either CD4(+) or CD8(+) T cells are able to mediate diabetes in the absence of the other population. In the case of transgenic mice, this may reflect the numbers of antigen-specific T cells able to access the pancreas and recruit other cell types such as macrophages leading to a release of high concentrations of damaging cytokines. Previous studies examining the requirement for CD8(+) T cells have used antibodies specific for CD8alpha. It is known that CD8alpha is expressed not only on alphabeta T cells, but also on other cell types, including a DC population that may be critical for presenting islet antigen in the pancreatic draining lymph nodes. Therefore, we have re-examined the need for both CD4(+) and CD8(+) T cell populations in diabetes development in NOD mice using an antibody to CD8beta. Our studies indicate that by using highly purified populations of T cells and antibodies specific for CD8(+) T cells, there is indeed a need for both cell types. In accordance with some other reports, we found that CD4(+) T cells appeared to be able to access the pancreas more readily than CD8(+) T cells. Despite the ability of CD4(+) T cells to recruit CD11b class II positive cells, diabetes did not develop in the absence of CD8(+) T cells. These studies support the observation that CD8(+) T cells may be final effector cells. As both T cell populations are clearly implicated in diabetes development, we have used a combination of non-depleting antibodies to target both CD4-positive and CD8-positive cells and found that this antibody combination was able to reverse diabetes onset in NOD mice as effectively as anti-CD3 antibodies.

11.
Nat Med ; 15(7): 814-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19491843

RESUMO

Nonobese diabetic (NOD) mice provide an excellent model of type 1 diabetes. The genetic contribution to this disease is complex, with more than 20 loci implicated in diabetes onset. One of the challenges for researchers using the NOD mouse model (and, indeed, other models of spontaneous autoimmune disease) has been the high density of sequence variation within candidate chromosomal segments. Furthermore, the scope for analyzing many putative disease loci via gene targeting has been hampered by the lack of NOD embryonic stem (ES) cells. We describe here the derivation of NOD ES cell lines capable of generating chimeric mice after stable genetic modification. These NOD ES cell lines also show efficient germline transmission, with offspring developing diabetes. The availability of these cells will not only enable the dissection of closely linked loci and the role they have in the onset of type 1 diabetes but also facilitate the generation of new transgenics.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Células-Tronco Embrionárias/citologia , Animais , Linhagem Celular , Quimera , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
12.
J Clin Invest ; 119(3): 565-72, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19188681

RESUMO

Th17 cells are involved in the pathogenesis of many autoimmune diseases, but it is not clear whether they play a pathogenic role in type 1 diabetes. Here we investigated whether mouse Th17 cells with specificity for an islet antigen can induce diabetes upon transfer into NOD/SCID recipient mice. Induction of diabetes in NOD/SCID mice via adoptive transfer of Th1 cells from BDC2.5 transgenic mice was prevented by treatment of the recipient mice with a neutralizing IFN-γ-specific antibody. This result suggested a major role of Th1 cells in the induction of disease in this model of type 1 diabetes. Nevertheless, transfer of highly purified Th17 cells from BDC2.5 transgenic mice caused diabetes in NOD/SCID recipients with similar rates of onset as in transfer of Th1 cells. However, treatment with neutralizing IL-17-specific antibodies did not prevent disease. Instead, the transferred Th17 cells, completely devoid of IFN-γ at the time of transfer, rapidly converted to secrete IFN-γ in the NOD/SCID recipients. Purified Th17 cells also upregulated Tbet and secreted IFN-γ upon exposure to IL-12 in vitro and in vivo in NOD/SCID recipients. These results indicate substantial plasticity of Th17 commitment toward a Th1-like profile.


Assuntos
Diferenciação Celular/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Th1/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/sangue , Regulação para Baixo/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-12/farmacologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Pâncreas/citologia , Pâncreas/imunologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Interleucina/genética , Receptores de Interleucina-12/genética , Proteínas com Domínio T/genética , Células Th1/citologia , Células Th1/metabolismo , Células Th1/transplante , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th17/transplante , Regulação para Cima/genética , Proteínas de Xenopus/genética
13.
Autoimmunity ; 41(5): 383-94, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18568644

RESUMO

The non-obese diabetic (NOD) mouse spontaneously develops diabetes and is a widely used model of Type 1 Diabetes in humans. The major histocompatibility complex class II plays an important role in governing disease susceptibility in NOD mice. NOD mice express a rare I-A allele, I-A(g7), and do not express I-E molecules. Interestingly, transgenic NOD mice which express I-E (NOD-E) fail to develop diabetes although, the protective mechanism(s) are incompletely understood. Initially, we explored whether diabetes prevention was due to deletion of autoreactive T cells. Through adoptive transfer with depletion of CD25+ T cells, we demonstrated that autoreactive T cells were present in the periphery of NOD-E mice. Although, BDC2.5NOD T cells proliferated less in the pancreatic lymph nodes of NOD-E mice, we found that they transferred disease with a similar kinetic in NOD.scid and NOD-E.scid recipients suggesting that there was little difference in peripheral antigen presentation in NOD-E mice. We also found that there were no proportional or functional differences between NOD and NOD-E T regs. Our studies indicate that autoreactive T cells are present within the periphery of NOD-E mice but that these cells are present in low numbers suggesting that peripheral tolerogenic mechanisms are able to prevent them from inducing diabetes.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos
14.
Immunology ; 121(4): 565-76, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17437531

RESUMO

The role of regulatory T cells (Treg) in maintaining tolerance to self has been intensively scrutinized, particularly since the discovery of Foxp3 as a Treg-specific transcription factor. The BDC2.5NOD transgenic mouse is an excellent model of immunoregulation because it has a very low incidence of diabetes despite a highly autoreactive T-cell repertoire. It has previously been shown that reactivity against islets decreases with age in BDC2.5NOD mice. Here we show that there is a markedly higher frequency of Foxp3(+) Treg in the CD4(+) subset of 16-20-week-old mice compared with 4- or 8-week-old mice. This phenomenon can be observed in the spleen, thymus, pancreatic draining lymph nodes and the pancreas itself. We show that this early age-related increase in the frequency of Foxp3(+) cells does not occur in wild-type NOD, BALB/c or C57BL/6 mice. Further, we show that, in contrast to some reports on Treg in wild-type NOD mice, the suppressive function of BDC2.5NOD Treg from 16- to 20-week-old mice is intact and comparable to that from 4- to 8-week-old mice both in vitro and in vivo. Our data offer insights into the long-term protection of BDC2.5NOD mice from diabetes and an explanation for the age-related decrease in anti-islet responses seen in BDC2.5NOD mice.


Assuntos
Envelhecimento/imunologia , Fatores de Transcrição Forkhead/análise , Linfócitos T Reguladores/citologia , Animais , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Tolerância Imunológica/imunologia , Imunofenotipagem , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pâncreas/imunologia , Especificidade da Espécie , Baço/imunologia , Timo/imunologia
15.
Immunology ; 121(1): 15-28, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17428252

RESUMO

The role of regulatory T cells (Tregs) in maintaining self tolerance has been intensively researched and there is a growing consensus that a decline in Treg function is an important step towards the development of autoimmune diseases, including diabetes. Although we show here that CD25+ cells delay diabetes onset in non-obese diabetic (NOD) mice, we found, in contrast to previous reports, neither an age-related decline nor a decline following onset of diabetes in the frequency of CD4+ CD25+ Foxp3+ regulatory T cells. Furthermore, we demonstrate that CD4+ CD25+ cells from both the spleen and pancreatic draining lymph nodes of diabetic and non-diabetic NOD mice are able to suppress the proliferation of CD4+ CD25- cells to a similar extent in vitro. We also found that pretreatment of NOD mice with anti-CD25 antibody allowed T cells with a known reactivity to islet antigen to proliferate more in the pancreatic draining lymph nodes of NOD mice, regardless of age. In addition, we demonstrated that onset of diabetes in NOD.scid mice is faster when recipients are co-administered splenocytes from diabetic NOD donors and anti-CD25. Finally, we found that although diabetic CD4+ CD25+ T cells are not as suppressive in cotransfers with effectors into NOD.scid recipients, this may not indicate a decline in Treg function in diabetic mice because over 10% of CD4+ CD25+ T cells are non-Foxp3 and the phenotype of the CD25- contaminating population significantly differs in non-diabetic and diabetic mice. This work questions whether onset of diabetes in NOD mice is associated with a decline in Treg function.


Assuntos
Diabetes Mellitus Experimental/imunologia , Fatores de Transcrição Forkhead/análise , Subunidade alfa de Receptor de Interleucina-2/análise , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Envelhecimento/imunologia , Animais , Autoantígenos/imunologia , Proliferação de Células , Células Cultivadas , Tolerância Imunológica , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ilhotas Pancreáticas/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Baço/imunologia , Baço/transplante
16.
Diabetes ; 56(3): 634-40, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17327430

RESUMO

Monoclonal antibodies to T-cell coreceptors have been shown to tolerise autoreactive T-cells and prevent or even reverse autoimmune pathology. In type 1 diabetes, there is a loss of insulin-secreting beta-cells, and a cure for type 1 diabetes would require not only tolerance induction but also recovery of the functional beta-cell mass. Although we have previously shown that diabetic mice have increased numbers of ductal progenitors in the pancreas, there is no evidence of any increase of insulin-secreting cells in the ducts. In contrast, in the adult human pancreas of patients with chronic pancreatitis, we can demonstrate, in the ducts, increased numbers of insulin-containing cells, as well as cells containing other endocrine and exocrine markers. There are also significantly increased numbers of cells expressing the homeodomain protein, pancreatic duodenal homeobox-1. Anti-CD3 has been shown to reverse overt diabetes in NOD mice; thus, we have used this model to ask whether monoclonal antibody-mediated inhibition of ongoing beta-cell destruction enables islet regeneration to occur. We find no evidence that such monoclonal antibody therapy results in either regeneration of insulin-secreting beta-cells or of increased proliferation of islet beta-cells.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Complexo CD3 , Diabetes Mellitus/tratamento farmacológico , Ilhotas Pancreáticas/fisiologia , Pancreatite Crônica/metabolismo , Regeneração/fisiologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Pâncreas/citologia , Pâncreas/metabolismo
17.
J Immunol ; 177(11): 7588-98, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17114428

RESUMO

The invariant (Ii) chain acts as an essential chaperone to promote MHC class II surface expression, Ag presentation, and selection of CD4(+) T cells. We have examined its role in the development of type 1 diabetes in NOD mice and show that Ii chain-deficient NOD mice fail to develop type 1 diabetes. Surprisingly, Ii chain functional loss fails to disrupt in vitro presentation of islet Ags, in the context of NOD I-A(g7) molecules. Moreover, pathogenic effector cells could be shown to be present in Ii chain-deficient NOD mice because they were able to transfer diabetes to NOD.scid recipients. The ability of these cells to transfer diabetes was markedly enhanced by depletion of CD25 cells coupled with in vivo anti-CD25 treatment of recipient mice. The numbers of CD4(+)CD25(+)Foxp3(+) T cells in thymus and periphery of Ii chain-deficient NOD mice were similar to those found in normal NOD mice, in contrast to conventional CD4(+) T cells whose numbers were reduced. This suggests that regulatory T cells are unaffected in their selection and survival by the absence of Ii chain and that an alteration in the balance of effector to regulatory T cells contributes to diabetes prevention.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Autoantígenos/imunologia , Transplante de Células , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Tolerância a Antígenos Próprios/imunologia , Células Th1/imunologia
18.
Immunology ; 116(4): 525-31, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313366

RESUMO

The NOD-derived islet-reactive CD4(+) T cell clone, BDC-2.5, is able to transfer diabetes to neonatal non-obese diabetic (NOD) mice but is unable to transfer disease to either adult NOD or NOD scid recipients. Transfer of diabetes to adult recipients by BDC-2.5 is only accomplished by cotransfer of CD8(+) T cells from a diabetic donor. To understand why this CD4(+) T cell clone is able to mediate diabetes in neonatal but not the adult recipients we examined the ability of the clone to traffic in the different recipients. Our studies showed that MAdCAM-1 has a very different expression pattern in the neonatal and adult pancreas. Blockade of this addressin prevents the clone from transferring diabetes to neonatal mice, suggesting that the differential pancreatic expression of MAdCAM-1 in neonatal and adult pancreas provides an explanation of the differences in diabetes development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Moléculas de Adesão Celular/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/imunologia , Envelhecimento/imunologia , Animais , Animais Recém-Nascidos , Linfócitos T CD8-Positivos/imunologia , Moléculas de Adesão Celular/metabolismo , Células Clonais/imunologia , Células Clonais/transplante , Transfusão de Linfócitos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucoproteínas , Pâncreas/metabolismo
19.
Clin Immunol ; 115(1): 74-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15870024

RESUMO

IL-18 is a type 1 pro-inflammatory cytokine with structural similarities to IL-1 and in synergy with IL-12 stimulates IFN-gamma production from T lymphocytes and polarizes development and function of Th1 cells. Because IL-1, IFN-gamma, and up-regulated Th1-mediated events are involved in the pathogenesis of both human and rodent type 1 diabetes mellitus, we have evaluated the effects of a specific inhibitor of IL-18 (the IL-18bp:FcIg) on the development of accelerated forms of autoimmune diabetes in NOD mice. The data show that prolonged prophylactic treatment with IL-18bp:FcIg significantly reduced the cumulative incidence of diabetes induced in NOD mice either by adoptive transfer of diabetogenic cells or by injection with large doses of cyclophosphamide. These data provide the first in vivo evidence for the diabetogenic role of IL-18 in immuno-inflammatory diabetogenic pathways in NOD mice.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Glicoproteínas/farmacologia , Imunoterapia/métodos , Proteínas Recombinantes de Fusão/farmacologia , Transferência Adotiva , Animais , Ciclofosfamida , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Glicoproteínas/genética , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/farmacologia , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/imunologia , Pâncreas/patologia , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...