RESUMO
The biogeographic origin of species may help to explain differences in average tree height and aboveground biomass (AGB) of tropical mountain forests. After the Andean uplift, small-statured trees should have been among the initial colonizers of the highlands (new cold environment) from the lowland tropics, since these species are pre-adapted to cold conditions with narrow vessels that are relatively resistant to freezing. If the descendants of these small-statured clades continue to dominate tropical highland forests, there will be a high co-occurrence of close relatives at high elevations. In other words, this scenario predicts a systematic decline in tree size, AGB, and phylogenetic diversity with elevation. In contrast, the colonization of Andean forests by some large-statured clades that originated in temperate regions may modify this expectation and promote a mixing of tropical and temperate clades, thereby increasing the phylogenetic diversity in tropical highland forests. This latter scenario predicts an increase or no change of tree size, AGB, and phylogenetic diversity with elevation. We assessed how the historical immigration of large-statured temperate-affiliated tree lineages adapted to cold conditions may have influenced the composition and structure of Andean forests. Specifically, we used 92 0.25-ha forest inventory plots distributed in the tropical Andes Mountains of Colombia to assess the relationship between the phylogenetic diversity and AGB along elevational gradients. We classified tree species as being either "tropical affiliated" or "temperate affiliated" and estimated their independent contribution to forest AGB. We used structural equation modeling to separate the direct and indirect effect of elevation on AGB. We found a hump-shaped relationship of phylogenetic diversity, AGB, and tree size with elevation. The high phylogenetic diversity found between 1,800-2,200 m above sea level (asl) was due to the mixing of highland floras containing many temperate-affiliated species, and lowland floras containing mostly tropical-affiliated species. The high AGB in highland forests, which contrasted with the expected decline of AGB with elevation, was likely due to the significant contribution of temperate-affiliated species. Our findings highlight the lasting importance of biogeographic history on the composition and structure of Andean mountain forests.
Assuntos
Florestas , Clima Tropical , Biomassa , Colômbia , FilogeniaRESUMO
The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical montane forests are vulnerable to deforestation, especially black Oak forests due to their commercial value. Given their high carbon storage potential, the presence of endemic species and the strategic functions of these ecosystems, we recommend that they should be considered relevant during REDD+, PES or any other conservation assessment.
Assuntos
Biomassa , Carbono/metabolismo , Florestas , Colômbia , Clima TropicalRESUMO
The tropical montane forests in the Colombian Andean region are located above 1 500m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25ha plots were randomly distributed in the forests and all trees with D≥10cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (≈1 700-1 800m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical montane forests are vulnerable to deforestation, especially black Oak forests due to their commercial value. Given their high carbon storage potential, the presence of endemic species and the strategic functions of these ecosystems, we recommend that they should be considered relevant during REDD+, PES or any other conservation assessment. Rev. Biol. Trop. 63 (1): 69-82. Epub 2015 March 01.
Los bosques tropicales de montaña (BTM) en la región Andina de Colombia se encuentran por encima de 1 500m, y han sido fuertemente deforestados. A pesar de la presunción general de que la productividad y las reservas de carbono en estos ecosistemas son bajas, los estudios al respecto son escasos. Este estudio tuvo por objetivo i) estimar la biomasa aérea (BA) de los bosques localizados en el sur de la región Andina colombiana, ii) identificar el potencial de almacenamiento de carbono en bosques dominados por el roble negro Colombobalanus excelsa e identificar la relación entre la BA y la altitud, y iii) analizar su papel en mecanismos de conservación, como el Pago por Servicios Ambientales (PSA) y la Reducción de Emisiones por deforestación y Degradación (REDD+). Veintiséis parcelas de 0.25ha fueron distribuidas al azar, y se midieron todos los árboles con D≥10cm. Los resultados obtenidos de BA y carbono almacenado fueron similares a los reportados para bosques tropicales de tierras bajas. Esto se puede explicar por la abundancia y dominancia de C. excelsa, que contribuye con más del 81% de la BA/carbono; el error asociado a las estimaciones fue de 10.58%. Se encontró una relación negativa y significativa entre la BA y la altitud, pero los valores más altos de BA estuvieron en las altitudes medias (≈1 700-1 800m), donde las condiciones ambientales podrían ser favorables para su crecimiento. El potencial de almacenamiento de carbono de estos bosques fue alto. Los resultados permiten tener elementos importantes para entender el papel de los BTM como sumideros de carbono. Sin embargo, si la tasa histórica de deforestación en el área de estudio continúa, las emisiones brutas de CO2e a la atmósfera podrían convertirlos en una fuente de emisiones importante. Actualmente, los BTM son vulnerables a la deforestación, especialmente los bosques de roble negro debido a su valor comercial. Teniendo en cuenta el alto potencial de almacenamiento de carbono, la presencia de especies endémicas, y las funciones estratégicas que pueden desempeñar estos ecosistemas, se recomienda que sean considerados relevantes para REDD+, PSA u otra estrategia de conservación.
Assuntos
Biomassa , Carbono/metabolismo , Florestas , Colômbia , Clima TropicalRESUMO
Breve historia del desarrollo de los métodos de diagnóstico por imágenes a partir del descubrimiento de los rayos X hasta las múltiples posibilidades actuales y futuras. Análisis de ubicación e importancia de éstas técnicas dentro de la organización de un Hospital moderno
Assuntos
Radiografia/históriaRESUMO
Se analiza la preocupación de la Organización Mundial de la Salud acerca de la proliferación de métodos diagnósticos radiológicos de escaso rendimiento que suponen elevación considerable de los costos de salud y notable incremento de las dosis de radiación. Se analizan diversos exámenes en relación a éstas inquietudes