Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Spine ; 27(2): 215-226, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28598292

RESUMO

OBJECTIVE Chordoma is a slow-growing, locally aggressive cancer that is minimally responsive to conventional chemotherapy and radiotherapy and has high local recurrence rates after resection. Currently, there are no rodent models of spinal chordoma. In the present study, the authors sought to develop and characterize an orthotopic model of human chordoma in an immunocompromised rat. METHODS Thirty-four immunocompromised rats were randomly allocated to 4 study groups; 22 of the 34 rats were engrafted in the lumbar spine with human chordoma. The groups were as follows: UCH1 tumor-engrafted (n = 11), JHC7 tumor-engrafted (n = 11), sham surgery (n = 6), and intact control (n = 6) rats. Neurological impairment of rats due to tumor growth was evaluated using open field and locomotion gait analysis; pain response was evaluated using mechanical or thermal paw stimulation. Cone beam CT (CBCT), MRI, and nanoScan PET/CT were performed to evaluate bony changes due to tumor growth. On Day 550, rats were killed and spines were processed for H & E-based histological examination and immunohistochemistry for brachyury, S100ß, and cytokeratin. RESULTS The spine tumors displayed typical chordoma morphology, that is, physaliferous cells filled with vacuolated cytoplasm of mucoid matrix. Brachyury immunoreactivity was confirmed by immunostaining, in which samples from tumor-engrafted rats showed a strong nuclear signal. Sclerotic lesions in the vertebral body of rats in the UCH1 and JHC7 groups were observed on CBCT. Tumor growth was confirmed using contrast-enhanced MRI. In UCH1 rats, large tumors were observed growing from the vertebral body. JHC7 chordoma-engrafted rats showed smaller tumors confined to the bone periphery compared with UCH1 chordoma-engrafted rats. Locomotion analysis showed a disruption in the normal gait pattern, with an increase in the step length and duration of the gait in tumor-engrafted rats. The distance traveled and the speed of rats in the open field test was significantly reduced in the UCH1 and JHC7 tumor-engrafted rats compared with controls. Nociceptive response to a mechanical stimulus showed a significant (p < 0.001) increase in the paw withdrawal threshold (mechanical hypalgesia). In contrast, the paw withdrawal response to a thermal stimulus decreased significantly (p < 0.05) in tumor-engrafted rats. CONCLUSIONS The authors developed an orthotopic human chordoma model in rats. Rats were followed for 550 days using imaging techniques, including MRI, CBCT, and nanoScan PET/CT, to evaluate lesion progression and bony integrity. Nociceptive evaluations and locomotion analysis were performed during follow-up. This model reproduces cardinal signs, such as locomotor and sensory deficits, similar to those observed clinically in human patients. To the authors' knowledge, this is the first spine rodent model of human chordoma. Its use and further study will be essential for pathophysiology research and the development of new therapeutic strategies.


Assuntos
Cordoma/fisiopatologia , Modelos Animais de Doenças , Membro Posterior/fisiopatologia , Atividade Motora , Nociceptividade , Neoplasias da Coluna Vertebral/fisiopatologia , Animais , Linhagem Celular Tumoral , Cordoma/diagnóstico por imagem , Cordoma/patologia , Feminino , Marcha/fisiologia , Humanos , Hospedeiro Imunocomprometido , Atividade Motora/fisiologia , Recidiva Local de Neoplasia/fisiopatologia , Transplante de Neoplasias , Nociceptividade/fisiologia , Distribuição Aleatória , Ratos , Sacro , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/patologia
2.
Spine J ; 17(9): 1325-1334, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28412561

RESUMO

BACKGROUND CONTEXT: Metastases to the spine are a common source of severe pain in cancer patients. The secondary effects of spinal metastases include pain, bone fractures, hypercalcemia, and neurological deficits. As the disease progresses, pain severity can increase until it becomes refractory to medical treatments and leads to a decreased quality of life for patients. A key obstacle in the study of pain-induced spinal cancer is the lack of reliable and reproducible spine cancer animal models. In the present study, we developed a reproducible and reliable rat model of spinal cancer using human-derived tumor tissue to evaluate neurological decline using imaging and behavioral techniques. PURPOSE: The present study outlines the development and characterization of an orthotopic model of human breast cancer to the spine in immunocompromised rats. STUDY DESIGN/SETTING: This is a basic science study. METHODS: Female immunocompromised rats were randomized into three groups: tumor (n=8), RBC3 mammary adenocarcinoma tissue engrafted in the L5 vertebra body; sham (n=6), surgery performed but not tumor engrafted; and control (n=6), naive rats, no surgery performed. To evaluate the neurological impairment due to tumor invasion, functional assessment was done in all rodents at day 40 after tumor engraftment using locomotion gait analysis and pain response to a mechanical stimulus (Randall-Selitto test). Bioluminescence (BLI) was used to evaluate tumor growth in vivo and cone beam computed tomography (CBCT) was performed to evaluate bone changes due to tumor invasion. The animals were euthanized at day 45 and their spines were harvested and processed for hematoxylin and eosin (H&E) staining. RESULTS: Tumor growth in the spine was confirmed by BLI imaging and corroborated by histological analysis. Cone beam computed tomography images were characterized by a decrease in the bone intensity in the lumbar spine consistent with tumor location on BLI. On H&E staining of tumor-engrafted animals, there was a near-complete ablation of the ventral and posterior elements of the L5 vertebra with severe tumor invasion in the bony components displacing the spinal cord. Locomotion gait analysis of tumor-engrafted rats showed a disruption in the normal gait pattern with asignificant reduction in length (p=.02), duration (p=.002), and velocity (p=.002) of right leg strides and only in duration (p=.0006) and velocity (p=.001) of left leg strides, as compared with control and sham rats. Tumor-engrafted animals were hypersensitive to pain stimulus shown as a significantly reduced response in time (p=.02) and pressure (p=.01) applied when compared with control groups. CONCLUSIONS: We developed a system for the quantitative analysis of pain and locomotion in an animal model of metastatic human breast cancer of the spine. Tumor-engrafted animals showed locomotor and sensory deficits that are in accordance with clinical manifestation in patients with spine metastasis. Pain response and locomotion gait analysis were performed during follow-up. The Randall-Selitto test was a sensitive method to evaluate pain in the rat's spine. We present a model for the study of bone-associated cancer pain secondary to cancer metastasis to the spine, as well as for the study of new therapies and treatments to lessen pain from metastatic cancer to the neuroaxis.


Assuntos
Adenocarcinoma/patologia , Marcha , Hiperalgesia/etiologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias da Coluna Vertebral/patologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Ratos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Neoplasias da Coluna Vertebral/secundário
3.
Blood Adv ; 1(17): 1324-1334, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29296775

RESUMO

Classical Hodgkin lymphoma (CHL) is a neoplasm characterized by robust inflammatory infiltrates and heightened expression of the immunosuppressive PD-1/PD-L1 pathway. Although anti-PD-1 therapy can be effective in >60% of patients with refractory CHL, improved treatment options are needed for CHLs which are resistant to anti-PD-1 or relapse after this form of immunotherapy. A deeper understanding of immunologic factors in the CHL microenvironment might support the design of more effective treatment combinations based on anti-PD-1. In addition, because the Epstein-Barr virus (EBV) residing in some CHL tumors is strongly immunogenic, we hypothesized that characteristics of the tumor immune microenvironment in EBV+ CHL would be distinct from EBV- CHL, with specific implications for designing combination treatment regimens. Employing immunohistochemistry for immune cell subsets and checkpoint molecules, as well as gene expression profiling, we characterized 32 CHLs from the Johns Hopkins archives, including 12 EBV+ and 20 EBV- tumors. Our results revealed a dichotomous cellular and cytokine immune milieu in EBV+ vs EBV- CHL. EBV+ tumors displayed a T helper 1 (Th1) profile typical of effective antitumor immunity, with increased infiltration of CD8+ T cells and coordinate expression of the canonical Th1 transcription factor Tbet (TBX21), interferon-γ (IFNG), and the IFN-γ-inducible immunosuppressive enzyme indoleamine 2,3-dioxygenase. In contrast, EBV- tumors manifested a pathogenic Th17 profile and ongoing engagement of the interleukin-23 (IL-23)/IL-17 axis, with heightened phosphorylated signal transducer and activator of transcription 3 expression in infiltrating lymphocytes. These findings suggest that drugs blocking the IL-23/IL-17 axis, which are already in the clinic for treating certain autoimmune disorders, may enhance the therapeutic impact of anti-PD-1 therapy in EBV- CHL.

4.
J Physiol ; 593(3): 739-52; discussion 753, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25433073

RESUMO

KEY POINTS: Heat stroke afflicts thousands of humans each year, worldwide. The immune system responds to hyperthermia exposure resulting in heat stroke by producing an array of immunological proteins, such as interleukin-6 (IL-6). However, the physiological functions of IL-6 and other cytokines in hyperthermia are poorly understood. We hypothesized that IL-6 plays a protective role in conditions of heat stroke. To test this, we gave small IL-6 supplements to mice prior to exposing them to hot environments sufficient to induce conditions of heat stroke. Pretreatment with IL-6 resulted in improved ability to withstand heat exposure in anaesthetized mice, it protected the intestine from injury, reducing the permeability of the intestinal barrier, and it attenuated the release of other cytokines involved in inflammation. The results support the hypothesis that IL-6 is a 'physiological stress hormone' that plays an important role in survival during acute life-threatening conditions such as heat stroke. ABSTRACT: The role of interleukin-6 (IL-6) in hyperthermia and heat stroke is poorly understood. Plasma IL-6 is elevated following hyperthermia in animals and humans, and IL-6 knockout mice are more intolerant of severe hyperthermia. We evaluated the effect of IL-6 supplementation on organ injury following severe hyperthermia exposure in anaesthetized mice. Two hours prior to hyperthermia, mice were treated with 0.6 µg intraperitoneal IL-6, or identical volumes of saline in controls. Mice were anaesthetized, gavaged with FITC-dextran for measures of gastrointestinal permeability, and exposed to incremental (0.5°C every 30 min) increases in temperature. Heating stopped when maximum core temperature (Tc) of 42.4°C was attained (Tc,max). The mice recovered at room temperature (≈22°C) for 30 or 120 min, at which time plasma and tissues were collected. IL-6-treated mice, on average, required ≈25 min longer to attain Tc,max . Injury and swelling of the villi in the duodenum was present in untreated mice after 30 min of recovery. These changes were blocked by IL-6 treatment. IL-6 also reduced gastrointestinal permeability, assayed by the accumulation of FITC-dextran in plasma. Plasma cytokines were also attenuated in IL-6-treated animals, including significant reductions in TNFα, MCP-1 (CXCL2), RANTES (CCL5) and KC (CCL5). The results demonstrate that IL-6 has a protective influence on the pattern of physiological responses to severe hyperthermia, suggesting that early endogenous expression of IL-6 may provide a protection from the development of organ damage and inflammation.


Assuntos
Golpe de Calor/tratamento farmacológico , Interleucina-6/uso terapêutico , Mucosa Intestinal/metabolismo , Animais , Quimiocina CCL2/sangue , Quimiocina CCL5/sangue , Suplementos Nutricionais , Golpe de Calor/prevenção & controle , Interleucina-6/administração & dosagem , Absorção Intestinal , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/sangue
5.
Am J Physiol Gastrointest Liver Physiol ; 305(6): G418-26, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23868412

RESUMO

Injury to the intestinal mucosa is a life-threatening problem in a variety of clinical disorders, including hemorrhagic shock, trauma, burn, pancreatitis, and heat stroke. The susceptibility to injury of different regions of intestine in these disorders is not well understood. We compared histological injury across the small intestine in two in vivo mouse models of injury, hemorrhagic shock (30% loss of blood volume) and heat stroke (peak core temperature 42.4°C). In both injury models, areas near the duodenum showed significantly greater mucosal injury and reductions in villus height. To determine if these effects were dependent on circulating factors, experiments were performed on isolated intestinal segments to test for permeability to 4-kDa FITC-dextran. The segments were exposed to hyperthermia (42°C for 90 min), moderate simulated ischemia (Po2 ∼30 Torr, Pco2 ∼60 Torr, pH 7.1), severe ischemia (Po2 ∼20 Torr, Pco2 ∼80 Torr, pH 6.9), or severe hypoxia (Po2 ∼0 Torr, Pco2 ∼35 Torr) for 90 min, and each group was compared with sham controls. All treatments resulted in marked elevations in permeability within segments near the duodenum. In severe hypoxia or hyperthermia, permeability was also moderately elevated in the jejunum and ileum; in moderate or severe ischemia, permeability was unaffected in these regions. The results demonstrate increased susceptibility of proximal regions of the small intestine to acute stress-induced damage, irrespective of circulating factors. The predominant injury in the duodenum may impact the pattern of acute inflammatory responses arising from breach of the intestinal barrier, and such knowledge may be useful for designing therapeutic strategies.


Assuntos
Duodeno/patologia , Mucosa Intestinal/patologia , Estresse Fisiológico , Animais , Dextranos/química , Febre/patologia , Temperatura Alta , Hipóxia/patologia , Mucosa Intestinal/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Choque Hemorrágico/patologia
6.
Am J Physiol Cell Physiol ; 303(4): C455-66, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22673618

RESUMO

Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.


Assuntos
Febre/metabolismo , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Interleucina-6/genética , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...