Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 917, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060278

RESUMO

The long-distance quantum transfer between electron-spin qubits in semiconductors is important for realising large-scale quantum computing circuits. Electron-spin to photon-polarisation conversion is a promising technology for achieving free-space or fibre-coupled quantum transfer. In this work, using only regular lithography techniques on a conventional 15 nm GaAs quantum well, we demonstrate acoustically-driven generation of single photons from single electrons, without the need for a self-assembled quantum dot. In this device, a single electron is carried in a potential minimum of a surface acoustic wave (SAW) and is transported to a region of holes to form an exciton. The exciton then decays and creates a single optical photon within 100 ps. This SAW-driven electroluminescence, without optimisation, yields photon antibunching with g(2)(0) = 0.39 ± 0.05 in the single-electron limit (g(2)(0) = 0.63 ± 0.03 in the raw histogram). Our work marks the first step towards electron-to-photon (spin-to-polarisation) qubit conversion for scaleable quantum computing architectures.

2.
Adv Mater ; 27(1): 122-9, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25382806

RESUMO

Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization.

3.
J Phys Chem Lett ; 5(8): 1421-6, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-26269988

RESUMO

The study of the photophysical properties of organic-metallic lead halide perovskites, which demonstrate excellent photovoltaic performance in devices with electron- and hole-accepting layers, helps to understand their charge photogeneration and recombination mechanism and unravels their potential for other optoelectronic applications. We report surprisingly high photoluminescence (PL) quantum efficiencies, up to 70%, in these solution-processed crystalline films. We find that photoexcitation in the pristine CH3NH3PbI3-xClx perovskite results in free charge carrier formation within 1 ps and that these free charge carriers undergo bimolecular recombination on time scales of 10s to 100s of ns. To exemplify the high luminescence yield of the CH3NH3PbI3-xClx perovskite, we construct and demonstrate the operation of an optically pumped vertical cavity laser comprising a layer of perovskite between a dielectric mirror and evaporated gold top mirrors. These long carrier lifetimes together with exceptionally high luminescence yield are unprecedented in such simply prepared inorganic semiconductors, and we note that these properties are ideally suited for photovoltaic diode operation.

4.
Nano Lett ; 13(11): 5303-10, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24134509

RESUMO

Crystal-phase engineering has emerged as a novel method of bandgap engineering, made feasible by the high surface-to-volume ratio of nanowires. There remains intense debate about the exact characteristics of the band structure of the novel crystal phases, such as wurtzite GaAs, obtained by this approach. We attack this problem via a low-temperature angle-dependent magneto-photoluminescence study of wurtzite/zinc-blende quantum disks in single GaAs nanowires. The exciton diamagnetic coefficient is proportional to the electron-hole correlation length, enabling a determination of the spatial extent of the exciton wave function in the plane and along the confinement axis of the crystal-phase quantum disks. Depending on the disk nature, the diamagnetic coefficient measured in Faraday geometry ranges between 25 and 75 µeV/T(2). For a given disk, the diamagnetic coefficient remains constant upon rotation of the magnetic field. Along with our envelope function calculation accounting for excitonic effects, we demonstrate that the electron effective mass in wurtzite GaAs quantum disks is heavy, mostly isotropic and results from mixing of the two lower-energy conduction bands with Γ7 and Γ8 symmetries. Finally, we discuss the implications of the results of the angle dependent magneto-luminescence for the likely symmetry of the exciton states. This work provides important insight in the band structure of wurtzite GaAs for future nanowire-based polytypic bandgap engineering.

5.
Chemphyschem ; 12(15): 2831-5, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21954057

RESUMO

Polymer morphology affects quantum efficiency. The influence of polymer morphology on the emission from charge transfer states within donor-acceptor (D-A) polydioctylfluorene derivatives is investigated. Two D-A copolymers, comprising one- and two-electron-donating triphenylamines substituted into the electron-accepting dioctylfluorene repeat unit were studied. Time-resolved emission spectra (with a resolution of 330 fs) in both liquid and glass phase isolate nuclear relaxation to the large-amplitude motion of the triphenylamine moiety about the single bond, analogous to the twisted intramolecular charge-transfer (TICT) model. The charge separation in the polymers' emitting states is therefore increased, suggesting a potential approach to enhance quantum efficiency in devices otherwise limited by exciton recombination.

7.
Nat Mater ; 1(4): 212-3, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12618778
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...