Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(12): 7834-7848, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267631

RESUMO

Our previous work identified compound 1 (SLU-2633) as a potent lead compound toward the identification of a novel treatment for cryptosporidiosis, caused by the parasite Cryptosporidium (EC50 = 0.17 µM). While this compound is potent and orally efficacious, the mechanism of action and biological target(s) of this series are currently unknown. In this study, we synthesized 70 compounds to develop phenotypic structure-activity relationships around the aryl "tail" group. In this process, we found that 2-substituted compounds are inactive, confirmed that electron withdrawing groups are preferred over electron donating groups, and that fluorine plays a remarkable role in the potency of these compounds. The most potent compound resulting from this work is SLU-10482 (52, EC50 = 0.07 µΜ), which was found to be orally efficacious with an ED90 < 5 mg/kg BID in a Cryptosporidium-infection mouse model, superior to SLU-2633.


Assuntos
Criptosporidiose , Cryptosporidium , Camundongos , Animais , Criptosporidiose/tratamento farmacológico , Flúor , Relação Estrutura-Atividade
2.
J Med Chem ; 64(15): 11729-11745, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342443

RESUMO

Cryptosporidiosis is caused by infection of the small intestine by Cryptosporidium parasites, resulting in severe diarrhea, dehydration, malabsorption, and potentially death. The only FDA-approved therapeutic is only partially effective in young children and ineffective for immunocompromised patients. Triazolopyridazine MMV665917 is a previously reported anti-Cryptosporidium screening hit with in vivo efficacy but suffers from modest inhibition of the hERG ion channel, which could portend cardiotoxicity. Herein, we describe our initial development of structure-activity relationships of this novel lead series with a particular focus on optimization of the piperazine-urea linker. We have discovered that piperazine-acetamide is a superior linker resulting in identification of SLU-2633, which has an EC50 of 0.17 µM, an improved projected margin versus hERG, prolonged pharmacokinetic exposure in small intestine, and oral efficacy in vivo with minimal systemic exposure. SLU-2633 represents a significant advancement toward the identification of a new effective and safe treatment for cryptosporidiosis.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...