Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014165

RESUMO

Background: Progressive functional decline is a key element of cancer-associated cachexia. No therapies have successfully translated to the clinic due to an inability to measure and improve physical function in cachectic patients. Major barriers to translating pre-clinical therapies to the clinic include lack of cancer models that accurately mimic functional decline and use of non-specific outcome measures of function, like grip strength. New approaches are needed to investigate cachexia-related function at both the basic and clinical science levels. Methods: Survival extension studies were performed by testing multiple cell lines, dilutions, and vehicle-types in orthotopic implantation of K-ras LSL.G12D/+ ; Trp53 R172H/+ ; Pdx-1-Cre (KPC) derived cells. 128 animals in this new model were then assessed for muscle wasting, inflammation, and functional decline using a battery of biochemical, physiologic, and behavioral techniques. In parallel, we analyzed a 156-subject cohort of cancer patients with a range of cachexia severity, and who required rehabilitation, to determine the relationship between gait speed via six-minute walk test (6MWT), grip strength (hGS), and functional independence measures (FIM). Cachectic patients were identified using the Weight Loss Grading Scale (WLGS), Fearon consensus criteria, and the Prognostic Nutritional Index (PNI). Results: Using a 100-cell dose of DT10022 KPC cells, we extended the survival of the KPC orthotopic model to 8-9 weeks post-implantation compared to higher doses used (p<0.001). In this Low-dose Orthotopic (LO) model, both progressive skeletal and cardiac muscle wasting were detected in parallel to systemic inflammation; skeletal muscle atrophy at the fiber level was detected as early as 3 weeks post-implantation compared to controls (p<0.001). Gait speed in LO animals declined as early 2 week post-implantation whereas grip strength change was a late event and related to end of life. Principle component analysis (PCA) revealed distinct cachectic and non-cachectic animal populations, which we leveraged to show that gait speed decline was specific to cachexia (p<0.01) while grip strength decline was not (p=0.19). These data paralleled our observations in cancer patients with cachexia who required rehabilitation. In cachectic patients (identified by WLGS, Fearon criteria, or PNI, change in 6MWT correlated with motor FIM score changes while hGS did not (r 2 =0.18, p<0.001). This relationship between 6MWT and FIM in cachectic patients was further confirmed through multivariate regression (r 2 =0.30, p<0.001) controlling for age and cancer burden. Conclusion: Outcome measures linked to gait are better associated with cachexia related function and preferred for future pre-clinical and clinical cachexia studies.

2.
Malar J ; 12: 64, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23405960

RESUMO

BACKGROUND: Members of the Anopheles punctulatus group (AP group) are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence) have evolved. METHODS: DNA sequences of 14 mitochondrial (mt) genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp) were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. RESULTS: Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. CONCLUSION: Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.


Assuntos
Anopheles/classificação , Anopheles/genética , Variação Genética , Genoma Mitocondrial , Filogenia , Animais , Genótipo , Humanos , Dados de Sequência Molecular , Papua Nova Guiné , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...