Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 229: 116025, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37127105

RESUMO

The goal of the project was to create environmentally friendly and economically viable materials for thoroughly purifying contaminated water. An affordable, phytogenic, and multifunctional plant-based nanomaterial was prepared in this context. The work demonstrates an effective green synthesis method for producing iron nanoparticles (FeNPs) using six different plant extracts as a reducing agent. The characterization of green synthesized catalysts was concluded via Spectroscopy (tauc plot), XRD, FE-SEM, and FT-IR. The produced nanomaterial, which had an X-ray diffractogram (XRD) peak at 43.33° and a size range of 1.82-63.63 nm, functioned as a highly effective nano-photocatalyst for the degradation of cationic dye. Due to the presence of a lower overall secondary metabolites quota, Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides. Further, the synthesized catalyst was tested for its effectiveness against gentian violet dye degradation. Ocimum sanctum plant extract reduced iron precursor produced the highest yield of dried NPs, followed by Azadirachta indica, Prosopis cineraria, Syzygium cumini, Citrus limon, and Salvadora oleoides, in that order. The dye removal efficiency of nanoparticles was 51% (Azadirachta indica), 83% (Ocimum sanctum), 59% (Syzygium cumini), 40% (Salvadora oleoides), 59% (Prosopis cineraria), and 63% (Citrus limon) after 12 h of visible light irradiation. The key factor in the process of deterioration is •O2-. As a result, the nanoparticles can be used in antibacterial and photocatalytic processes. The reduced band gap was responsible for the increased photocatalytic quantity. The maximum adsorption capacity at the time of equilibrium was obtained in order as Ocimum sanctum > Citrus limon > Prosopis cineraria > Syzygium cumini > Azadirachta indica > Salvadora oleoides. The simplicity of production, low cost, magnetic property, and high adsorption capacity will increase the efficacy of the water treatment method. This article reports on the creation of unique iron nanoparticles and their use in the purification of water.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ferro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Extratos Vegetais/química , Nanopartículas Metálicas/química
2.
Plants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203887

RESUMO

Mung bean (Vigna radiata L.) sprout is a popular fresh vegetable, tasty and high in antioxidants. To increase yield and quality after the occurrence of both abiotic and biotic stresses, the application of seaweed extracts is of great importance. Hence, this study was conducted to determine the effect of Ascophyllum nodosum extract (ANE) in the presence of salt on the antioxidant potential of V. radiata sprouts. Different concentrations of ANE viz. 0.00, 0.01, 0.05, 0.10, and 0.50% and NaCl 0, 25, 50, 75, and 100 mM alone and in combinations were tested for researching the antioxidant potential of V. radiata sprouts at 0, 24, and 36 h of sprouting. The DPPH free-radical-scavenging activity of sprouts of V. radiata was found to increase with time and peaked at 24 h of treatment. The A. nodosum extract (0.01%) could reverse the ill effect of the low level of salinity posed by up to 25 mM NaCl. The increasing salinity deteriorated the antioxidant activity using ABTS method of sprouts down to 20.45% of the control at 100 mM NaCl. The total phenolic content (TPC), total flavonoid content (TFC), and reducing power of V. radiata sprouts was found to increase till 36 h of sprouting. A slight increase in TPC, TFC and reducing power was observed when seeds were treated with low concentrations of ANE. The elevation in TPC, TFC and reducing power upon treatment with low concentrations of ANE was also noticed in sprouts in saline combinations. Alpha amylase inhibition activity was found to reach a (67.16% ± 0.9) maximum at 24 h of sprouting at a 0.01% concentration of ANE. Tyrosinase inhibition and alpha glucosidase inhibition was 88.0% ± 2.11 and 84.92% ± 1.2 at 36 h of sprouting, respectively, at 0.01% concentration of ANE. A. nodosum extract is natural, environmentally friendly, and safe, and could be used as one of the strategies to decline stress at a low level and enhance the antioxidant activities in V. radiata sprouts, thus increasing its potential to be developed as an antioxidant-based functional food.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...