Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(32): 29270-29280, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599985

RESUMO

In this study, albino Wistar rats that have developed diabetes as a result of the drug streptozotocin (STZ) were treated with camel milk and insulin. For this, 36 rats were divided into six different (n = 6) groups: control, control + camel milk, diabetic control, insulin, camel milk, and combined camel milk + insulin. A 50 mg/kg intraperitoneal injection of STZ was used to induce diabetes. Rats with blood glucose levels exceeding 250 mg/dL after the induction of diabetes were taken into consideration for the study. The diabetic rats were treated with camel milk (50 mL/rat/day), insulin (6 units kg-1 b·wt/day), or their combination daily for 30 days. Throughout the course of the study, the rats' glucose levels and body weight were checked. In the diabetic control rats, a reduction in body weight and hyperglycemic condition was seen. Improvements in glycemic levels and weight gain were seen in the camel milk, insulin, and combined treatment groups compared to the diabetic control group; however, the combined treated group did not show the same degree of improvement as the alone treated group. Hematological changes in the diabetic control group included reductions in lymphocytes, platelets, total leukocyte count (TLC), and red blood cell (RBC) indices (mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), packed cell volume (PCV), and mean cell hemoglobin concentration (MCHC)). Each group that got insulin and camel milk separately and combined showed improvement in these changes. The liver, kidney, and pancreas in the diabetic control group had worsened morphological alterations. These histopathological alternations were significantly improved in the treatment groups. Hence, this study demonstrates the antidiabetic effects of camel milk in comparison to insulin. These findings highlight the potential of camel milk as an alternative therapy for diabetes, although further research is warranted to fully understand its mechanisms of action and long-term effects.

2.
J Diabetes Metab Disord ; 21(1): 379-397, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673460

RESUMO

Purpose: Hypertriglyceridemia (HTG) is strongly associated with the various types of disease conditions and evolving as epidemics. Hence, it is important to identify molecules that lower the triglyceride and chylomicron levels. Tinospora cordifolia is an illustrious Ayurveda drug, has proved juvenile and immunomodulatory properties. Methods: Twenty four (24) patients having >499 mg/dL TG and 130-230 mg/dL of cholesterol were randomized and given 100 mL/day (~3.0 g) water extract of T. cordifolia (TCE) for 14 days. Basal parameters were analyzed before and after TC intervention to analyzed primary outcomes. Further, unbiased metabolomics and proteomics profiling was explored to assess the efficacy of TCE in HTG patients. Results: TCE intervention decreased the levels of triglycerides, and VLDL to 380.45 ± 17.44, and 31.85 ± 5.88, and increased the HDL levels to 47.50 ± 9.05 mg/dL significantly (p < 0.05). Metabolomics analysis identified the significant alteration in 69 metabolites and 72 proteins in plasma of HTG patients. TCE intervention reduced the level of isoprostanes, ROS, BCAA, and fatty acid derivatives, significantly. The annotation databases, Metboanalyst predicted Akt and Rap1 signaling, and ECM-receptor interaction is the most affected in HTG patients. TCE intervention normalized these events by increasing the peroxisome biogenesis and modulating Akt and Rap1 signaling pathway. Conclusion: T. cordifolia intervention suppresses the baseline in HTG patients. Omics analysis showed that TCE intervention modulates the Akt and Rap signaling, and peroxisome biogenesis to control the cellular switches and signaling pathways. Hence, TCE can be used as a supplement or alternate of standard drugs being used in the management of HTG. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-022-00985-6.

3.
Curr Mol Pharmacol ; 15(3): 475-486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34365963

RESUMO

Skeletal muscles are considered the largest reservoirs of the protein pool in the body and are critical for the maintenances of body homeostasis. Skeletal muscle atrophy is supported by various physiopathological conditions that lead to loss of muscle mass and contractile capacity of the skeletal muscle. Lysosomal mediated autophagy and ubiquitin-proteasomal system (UPS) concede the major intracellular systems of muscle protein degradation that result in the loss of mass and strength. Both systems recognize ubiquitination as a signal of degradation through different mechanisms, a sign of dynamic interplay between systems. Hence, growing shreds of evidence suggest the interdependency of autophagy and UPS in the progression of skeletal muscle atrophy under various pathological conditions. Therefore, understanding the molecular dynamics and associated factors responsible for their interdependency is necessary for the new therapeutic insights to counteract muscle loss. Based on current literature, the present review summarizes the factors that interplay between autophagy and UPS in favor of enhanced proteolysis of skeletal muscle and how they affect the anabolic signaling pathways under various conditions of skeletal muscle atrophy.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia/fisiologia , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
4.
Biophys Rev ; 13(2): 203-219, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927785

RESUMO

Among the four proteolytic systems in the cell, autophagy and the ubiquitin-proteasome system (UPS) are the main proteolytic events that allow for the removal of cell debris and proteins to maintain cellular homeostasis. Previous studies have revealed that these systems perform their functions independently of each other. However, recent studies indicate the existence of regulatory interactions between these proteolytic systems via ubiquitinated tags and a reciprocal regulation mechanism with several crosstalk points. UPS plays an important role in the elimination of short-lived/soluble misfolded proteins, whereas autophagy eliminates defective organelles and persistent insoluble protein aggregates. Both of these systems seem to act independently; however, disruption of one pathway affects the activity of the other pathway and contributes to different pathological conditions. This review summarizes the recent findings on direct and indirect dependencies of autophagy and UPS and their execution at the molecular level along with the important drug targets in skeletal muscle atrophy.

5.
J Ethnopharmacol ; 267: 113510, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia (TC) is being used as a blood purifier in Ayurveda since ancient time. It is a very popular immunomodulator and holds anti-inflammatory and anti-oxidative potential, hence anti-aging properties. Therefore, it is also known as 'Amrita' in Ayurveda and is widely used to treat diabetes mellitus type II (T2DM) and its secondary complications; however, its underlying mechanism was not expedited to date. AIM-: To explore the in vivo therapeutic efficiency and mechanism of action of TC and its secondary constitute magnoflorine on the skeletal muscle atrophy in the rat model of T2DM. METHOD: Animal model of T2DM was developed using streptozotocin (STZ) injection followed by intervention with TC, metformin, and magnoflorine for three weeks. Confirmation of T2DM and abrogation of atrophic markers and possible mechanisms on supplementation of TC and magnoflorine were explored using histology, bio-assays, Western blotting, and q-PCR. RESULT: TC and Magnoflorine supplementations significantly (p ≤ 0.05) decreased the fasting blood glucose (FBG) levels in T2DM rats. Both treatments prevented the lean body, individual skeletal muscle mass, and myotubes diameter loss (p ≤ 0.05). Magnoflorine significantly reduced the degradation of the protein indicated by biochemical markers of atrophy i.e. decreased serum creatine kinase (CK) levels and increased myosin heavy chain-ß (MyHC-ß) levels in muscles. Q-PCR and western blotting supported the findings that magnoflorine significantly increased the mRNA and protein abundances (~3 fold) of MyHC-ß.TC and magnoflorine efficiently decreased the expression of ubiquitin-proteasomal E3-ligases (Fn-14/TWEAK, MuRF1, and Atrogin 1), autophagy (Bcl-2/LC3B), and caspase related genes along with calpains activities in T2DM rats. Both TC and magnoflorine also increased the activity of superoxide dismutase, GSH-Px, decreased the activities of ß-glucuronidase, LPO, and prevented any alteration in the catalase activity. In contrast, magnoflorine increased expression of TNF-α and IL-6 whereas TC and metformin efficiently decreased the levels of these pro-inflammatory cytokines (p ≤ 0.05). However, magnoflorine was found to increase phosphorylation of Akt more efficiently than TC and metformin. CONCLUSION: TC, and magnoflorine are found to be effective to control fasting blood glucose levels significantly in T2DM rats. It also promoted the Akt phosphorylation, suppressed autophagy and proteolysis that might be related to blood glucose-lowering efficacy of magnoflorine and TC. However, increased muscle weight, specifically of the soleus muscle, expression of IL-6, and slow MyHC indicated the increased myogenesis in response to magnoflorine and independent from its hypoglycemic activity.


Assuntos
Anti-Inflamatórios/farmacologia , Aporfinas/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Transcrição Forkhead/metabolismo , Hipoglicemiantes/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Cadeias Pesadas de Miosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Cadeias Pesadas de Miosina/genética , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Ratos Wistar , Transdução de Sinais , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...