Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutr Res Pract ; 17(5): 827-843, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37780212

RESUMO

BACKGROUND/OBJECTIVES: Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS: The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS: Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p22phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1ß, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS: Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.

2.
Eur Food Res Technol ; 249(2): 451-464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36246093

RESUMO

Black rice has numerous health benefits and one of the well-known functional foods throughout the world. To encourage the increasing trend of the consumer interest in health-promoting functional foods, special varieties of rice have been developed offering greater nutrient values and exhibiting biological activities that are beneficial to the consumer. In this study, we aimed to evaluate the associations of the phytochemical contents, antioxidants, and anti-inflammatory properties among eight selected black rice germ and bran extracts (BR extracts) from 4 non-glutinous and 4 glutinous rice varieties. Accordingly, glutinous BR extracts possessed higher degree of Cyanidin-3-O-glucoside (C3G), Peonidin-3-O-glucoside (P3G) contents, antioxidant and anti-inflammatory properties than the non-glutinous BR extracts. Pearson's correlation indicated that the amount of C3G in the BR extracts had a strong positive association with the antioxidant properties (DPPH; r = 0.846, ABTS; r = 0.923, and FRAP; r = 0.958, p < 0.01). While P3G exhibited a strong positive association with the anti-inflammatory properties (r value = 0.717 and 0.797 for IL-6 and TNF-α inhibition, respectively, p < 0.05). Lastly, the principal component analysis (PCA) categorized the black rice varieties into three groups: Group A with high C3G content and superior antioxidant properties, Groups B with a high amount of P3G and potent anti-inflammatory properties, and Group C with a lower amount of phytochemical contents and less potent bioactivities. Overall, the outcomes of this study could provide vital information to food industries in selecting the variety of black rice for the functional food based on the anthocyanin contents that could benefit to consumers for new normal healthy lifestyle.

3.
Foods ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681372

RESUMO

Type I interferons (IFNs-I) are inflammatory cytokines that play an essential role in the pathogenesis of inflammation and autoimmune diseases. Signaling through nucleic acid sensors causes the production of IFNs-I. A stimulator of interferon genes (STING) is a DNA sensor that signals transduction, leading to the production of IFNs-I after their activation. This study aims to determine the anti-inflammatory effects of red rice bran extract (RRBE) on macrophages through the activation of STING signaling. RAW264.7 macrophage cells were stimulated with STING agonist (DMXAA) with and without RRBE. Cells and supernatant were collected. The level of mRNA expression was determined by qPCR, and inflammatory cytokine production was investigated by ELISA. The results indicate that RRBE significantly lowers the transcription of STING and interferon-stimulated genes (ISGs). Moreover, RRBE suppresses the phosphorylation of STING, leading to a decrease in the expression of Irf3, a transcription factor that initiates IFN-I signaling. Our results provide evidence that red rice bran extract may be a protective compound for inflammatory diseases by targeting STING signaling.

4.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164085

RESUMO

Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.


Assuntos
Osteogênese/efeitos dos fármacos , Osteoporose/prevenção & controle , Perilla frutescens/química , Extratos Vegetais/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
5.
Antioxidants (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671207

RESUMO

The aim of this study is to determine antioxidant and anti-inflammatory activities relating to the antiosteoporosis effects of various perilla seed meal (PSM) fractions. The remaining waste of perilla seed obtained from cold oil compression was extracted with 70% ethanol and sequentially fractionated according to solvent polarity with hexane, dichloromethane, ethyl acetate, and water. The results indicated that the seed-meal ethyl acetate fraction (SMEF) exhibited the highest antioxidant and anti-inflammatory activities, and rosmarinic acid (RA) content. The signaling pathways induced by the receptor activator of the nuclear factor kappa B (NF-κB) ligand (RANKL) that trigger reactive oxygen species (ROS) and several transcription factors, leading to the induction of osteoclastogenesis, were also investigated. The SMEF clearly showed attenuated RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts and TRAP activity. A Western blot analysis showed that the SMEF significantly downregulated RANKL-induced NF-κB, AP-1 activation, and the nuclear factor of activated T-cell 1 (NFATc1) expression. SMEF also suppressed RANKL-induced osteoclast-specific marker gene-like MMP-9 using zymography. Furthermore, the SMEF showed inhibition of RANKL-induced ROS production in RAW 264.7 cells. The results suggest that the SMEF, which contained high quantities of RA, could be developed as a natural active pharmaceutical ingredient for osteoclastogenic protection and health promotion.

7.
Biochem Pharmacol ; 85(7): 898-912, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23279849

RESUMO

The major goal of cancer drug discovery is to find an agent that is safe and affordable, yet effective against cancer. Here we show that morin (3,5,7,2',4'-pentahydroxyflavone) has potential against cancer cells through suppression of the signal transducer and activator of transcription 3 (STAT3) pathway, which is closely linked to the transformation, survival, proliferation, and metastasis of cancer. We found that morin completely suppressed inducible and constitutively activated STAT3 and blocked the nuclear translocation of STAT3 and its DNA binding in multiple myeloma and head and neck squamous carcinoma cells. Morin inhibited activated Src, JAK-1, and JAK-2, all of which are linked to STAT3 activation, while up-regulating a protein inhibitor of activated STAT3, PIAS3. Pervanadate reversed the effects of morin on STAT3 phosphorylation, indicating the role of a protein tyrosine phosphatase. Furthermore, morin induced SHP1 expression at both the mRNA and protein levels, and silencing of SHP1 abrogated the effect of morin on STAT3 phosphorylation, indicating that morin mediates its effects on STAT3 through SHP1. Suppression of STAT3 correlated with the down-regulation of various gene products linked to tumor survival, proliferation, and angiogenesis and led to sensitization of tumor cells to thalidomide and bortezomib. Comparing the activities of morin with those of four structurally related flavonols demonstrated the importance of hydroxyl groups in the B ring in inhibiting STAT3 activation. These findings suggest that morin suppresses the STAT3 pathway, leading to the down-regulation of STAT3-dependent gene expression and chemosensitization of tumor cells.


Assuntos
Anticarcinógenos/farmacologia , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Tirosina/metabolismo , Anticarcinógenos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática , Flavonoides/química , Neoplasias de Cabeça e Pescoço , Humanos , Mieloma Múltiplo , Neovascularização Patológica/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , RNA Interferente Pequeno/genética , Relação Estrutura-Atividade
8.
Br J Pharmacol ; 165(7): 2127-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21955206

RESUMO

BACKGROUND AND PURPOSE: Most patients with cancer die not because of the tumour in the primary site, but because it has spread to other sites. Common tumours, such as breast, multiple myeloma, and prostate tumours, frequently metastasize to the bone. To search for an inhibitor of cancer-induced bone loss, we investigated the effect of thiocolchicoside, a semi-synthetic colchicoside derived from the plant Gloriosa superba and clinically used as a muscle relaxant, on osteoclastogenesis induced by receptor activator of NF-κB ligand (RANKL) and tumour cells. EXPERIMENTAL APPROACH: We used RAW 264.7 (murine macrophage) cells, a well-established system for osteoclastogenesis, and evaluated the effect of thiocolchicoside on RANKL-induced NF-κB signalling and osteoclastogenesis as well as on osteoclastogenesis induced by tumour cells. KEY RESULTS: Thiocolchicoside suppressed osteoclastogenesis induced by RANKL, and by breast cancer and multiple myeloma cells. Inhibition of the NF-κB pathway was responsible for this effect since the colchicoside inhibited RANKL-induced NF-κB activation, activation of IκB kinase (IKK) and suppressed inhibitor of NF-κBα (IκBα) phosphorylation and degradation, an inhibitor of NF-κB. Furthermore, an inhibitor of the IκBα kinase γ or NF-κB essential modulator, the regulatory component of the IKK complex, demonstrated that the NF-κB signalling pathway is mandatory for osteoclastogenesis induced by RANKL. CONCLUSIONS AND IMPLICATIONS: Together, these data suggest that thiocolchicoside significantly suppressed osteoclastogenesis induced by RANKL and tumour cells via the NF-κB signalling pathway. Thus, thiocolchicoside, a drug that has been used for almost half a century to treat muscle pain, may also be considered as a new treatment for bone loss.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Colchicina/análogos & derivados , Osteoclastos/efeitos dos fármacos , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Linhagem Celular , Colchicina/isolamento & purificação , Colchicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Quinase I-kappa B/metabolismo , Inflamação/prevenção & controle , Liliaceae/química , Masculino , Camundongos , NF-kappa B/metabolismo , Osteoclastos/patologia , Osteoclastos/fisiologia , Fitoterapia , Ligante RANK/fisiologia , Transdução de Sinais/efeitos dos fármacos
9.
Mol Pharmacol ; 80(5): 889-99, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21816954

RESUMO

Because constitutive activation of signal transducers and activators of transcription-3 (STAT3) has been linked with cellular transformation, survival, proliferation, chemoresistance, and angiogenesis of various tumor cells, agents that can suppress STAT3 activation have potential as cancer therapeutics. In the present report, we identified a flavone from the leaves of a Thai plant, Gardenia obtusifolia, 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (PMF), that has the ability to inhibit STAT3 activation. PMF inhibited both constitutive and interleukin-6-inducible STAT3 activation in multiple myeloma (MM) cells, as indicated by suppression of STAT3 phosphorylation, nuclear translocation, DNA binding, and STAT3-regulated gene expression. The inhibition of STAT3 by PMF was reversible. We found that the activation of various kinases including Janus-like kinase (JAK)-1, JAK-2, c-Src, extracellular signal-regulated kinases 1 and 2, AKT, and epidermal growth factor receptor, implicated in STAT3 activation, were inhibited by the flavone. It is noteworthy that pervanadate suppressed the ability of PMF to inhibit the phosphorylation of STAT3, suggesting that protein tyrosine phosphatase was involved. PMF induced the expression of SHP-1 and was linked to the dephosphorylation of STAT3, because its deletion by small interfering RNA abolished the PMF-induced constitutive and inducible STAT3 inhibition. STAT3 inhibition led to the suppression of proteins involved in proliferation (cyclin D1 and c-myc), survival (survivin, Mcl-1, Bcl-xL, Bcl-2, and cIAP-2), and angiogenesis (vascular endothelial growth factor). Finally, PMF inhibited proliferation and induced apoptosis of MM cells. PMF also significantly potentiated the apoptotic effects of Velcade and thalidomide in MM cells. Overall, these results suggest that PMF is a novel blocker of STAT3 activation and thus may have potential in suppression of tumor cell proliferation and reversal of chemoresistance in MM cells.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Flavonoides/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Fator de Transcrição STAT3/metabolismo , Western Blotting , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Indução Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , RNA Interferente Pequeno/genética
10.
Curr Drug Targets ; 12(11): 1595-653, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21561421

RESUMO

Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-kappaB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-kappaB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to "reverse pharmacology" or "bed to benchside" approach. We found that Ayurveda, a science of long life, almost 6,000 years old, can serve as a "goldmine" for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Crônica/prevenção & controle , Ayurveda , Humanos
11.
Mol Pharmacol ; 79(2): 279-89, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20930110

RESUMO

Most anticancer drugs have their origin in traditional medicinal plants. We describe here a flavone, 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (PMF), from the leaves of the Thai plant Gardenia obtusifolia, that has anti-inflammatory and anticancer potential. Because the nuclear factor-κB (NF-κB) pathway is linked to inflammation and tumorigenesis, we investigated the effect of PMF on this pathway. We found that PMF suppressed NF-κB activation induced by inflammatory agents, tumor promoters, and carcinogens. This suppression was not specific to the cell type. Although PMF did not directly modify the ability of NF-κB proteins to bind to DNA, it inhibited IκBα (inhibitory subunit of NF-κB) kinase, leading to suppression of phosphorylation and degradation of IκBα, and suppressed consequent p65 nuclear translocation, thus abrogating NF-κB-dependent reporter gene expression. Suppression of the NF-κB cell signaling pathway by the flavone led to the inhibition of expression of NF-κB-regulated gene products that mediate inflammation (cyclooxygenase-2), survival (XIAP, survivin, Bcl-xL, and cFLIP), proliferation (cyclin D1), invasion (matrix metalloproteinase-9), and angiogenesis (vascular endothelial growth factor). Suppression of antiapoptotic gene products by PMF correlated with the enhancement of apoptosis induced by tumor necrosis factor-α and the chemotherapeutic agents cisplatin, paclitaxel, and 5-flurouracil. Overall, our results indicate that PMF suppresses the activation of NF-κB and NF-κB-regulated gene expression, leading to the enhancement of apoptosis. This is the first report to demonstrate that this novel flavone has anti-inflammatory and anticancer effects by targeting the IKK complex.


Assuntos
Indutores da Angiogênese/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Flavonoides/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Fator de Necrose Tumoral alfa/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Genes Reporter , Humanos , Quinase I-kappa B/metabolismo , Imuno-Histoquímica , Oligodesoxirribonucleotídeos
12.
J Biol Chem ; 286(2): 1134-46, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21078664

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL) shows promise as a cancer treatment, but acquired tumor resistance to TRAIL is a roadblock. Here we investigated whether nimbolide, a limonoid, could sensitize human colon cancer cells to TRAIL. As indicated by assays that measure esterase activity, sub-G(1) fractions, mitochondrial activity, and activation of caspases, nimbolide potentiated the effect of TRAIL. This limonoid also enhanced expression of death receptors (DRs) DR5 and DR4 in cancer cells. Gene silencing of the receptors reduced the effect of limonoid on TRAIL-induced apoptosis. Using pharmacological inhibitors, we found that activation of ERK and p38 MAPK was required for DR up-regulation by nimbolide. Gene silencing of ERK abolished the enhancement of TRAIL-induced apoptosis. Moreover, our studies indicate that the limonoid induced reactive oxygen species production, which was required for ERK activation, up-regulation of DRs, and sensitization to TRAIL; these effects were mimicked by H(2)O(2). In addition, nimbolide down-regulated cell survival proteins, including I-FLICE, cIAP-1, cIAP-2, Bcl-2, Bcl-xL, survivin, and X-linked inhibitor of apoptosis protein, and up-regulated the pro-apoptotic proteins p53 and Bax. Interestingly, p53 and Bax up-regulation by nimbolide was required for sensitization to TRAIL but not for DR up-regulation. Overall, our results indicate that nimbolide can sensitize colon cancer cells to TRAIL-induced apoptosis through three distinct mechanisms: reactive oxygen species- and ERK-mediated up-regulation of DR5 and DR4, down-regulation of cell survival proteins, and up-regulation of p53 and Bax.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Limoninas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias da Mama , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos , Neoplasias Renais , Leucemia Mielogênica Crônica BCR-ABL Positiva , Neoplasias Pulmonares , Mieloma Múltiplo , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
13.
Anticancer Res ; 30(9): 3599-610, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20944143

RESUMO

We sought to determine the molecular basis for the anticancer activities of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (DH-PMF), isolated from Gardenia obtusifolia traditionally used in Thailand for a variety of ailments. As little as 1 µM DH-PMF inhibited the proliferation of prostate, colon, kidney, lung, head and neck, pancreas, breast, leukemia, and myeloma cancer cell lines. DH-PMF also suppressed the colony-forming ability of tumor cells, with 50% inhibition occurring at a dose less than 10 nM. DH-PMF induced G(2)/M and subG(1) cell cycle arrest, increased the levels of p21(WAF1/CIP1) and p27(KIP1), and reduced the expression of cyclin D1, CDC2, and c-MYC. Furthermore, DH-PMF inhibited AKT and glycogen synthase kinase 3 beta (GSK3ß) activation, reduced cell survival proteins, and induced apoptosis, as indicated by annexin V staining, TUNEL assay, and activation of caspase-8, -9 and -3. Overall, our results demonstrate that DH-PMF induces suppression of cell proliferation through modulation of AKT-GSK3ß pathways and induction of cyclin-dependent kinase (CDK) inhibitors.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , Gardenia/química , Neoplasias/metabolismo , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Medicina Tradicional do Leste Asiático , Neoplasias/patologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Tailândia
14.
Cancer Prev Res (Phila) ; 3(11): 1462-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20978115

RESUMO

The discovery of new uses for older, clinically approved drugs is one way to expedite drug development for cancer. Thiocolchicoside, a semisynthetic colchicoside from the plant Gloriosa superba, is a muscle relaxant and used to treat rheumatologic and orthopedic disorders because of its analgesic and anti-inflammatory mechanisms. Given that activation of the transcription factor NF-κB plays a major role in inflammation and tumorigenesis, we postulated that thiocolchicoside would inhibit NF-κB and exhibit anticancer effects through the modulation of NF-κB-regulated proteins. We show that thiocolchicoside inhibited proliferation of leukemia, myeloma, squamous cell carcinoma, breast, colon, and kidney cancer cells. Formation of tumor colonies was also suppressed by thiocolchicoside. The colchicoside induced apoptosis, as indicated by caspase-3 and poly(ADP-ribose) polymerase cleavage, and suppressed the expression of cell survival [e.g., Bcl-2, X-linked inhibitor of apoptosis (XIAP), MCL-1, bcl-xL, cIAP-1, cIAP-2, and cFLIP] proteins. Cell proliferation biomarkers such as c-MYC and phosphorylation of phosphoinositide 3-kinase and glycogen synthase kinase 3ß were also blocked by thiocolchicoside. Because most cell survival and proliferation gene products are regulated by NF-κB, we studied the effect of thiocolchicoside on this transcription factor and found that thiocolchicoside inhibited NF-κB activation, degradation of inhibitory κBα (IκBα), IκBα ubiquitination, and phosphorylation, abolished the activation of IκBα kinase, and suppressed p65 nuclear translocation. This effect of thiocolchicoside on the NF-κB pathway led to inhibition of NF-κB reporter activity and cyclooxygenase-2 promoter activity. Our results indicate that thiocolchicoside exhibits anticancer activity through inhibition of NF-κB and NF-κB-regulated gene products, which provides novel insight into a half-century old drug.


Assuntos
Antineoplásicos/farmacologia , Colchicina/análogos & derivados , NF-kappa B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Colchicina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Inflamação/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo
15.
Mol Cancer Res ; 8(10): 1425-36, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20826545

RESUMO

Most patients with cancer die not because of the tumor in the primary site, but because it has spread to other sites. Common tumors, such as breast, multiple myeloma, and prostate tumors, frequently metastasize to the bone. It is now well recognized that osteoclasts are responsible for the osteolysis observed in bone metastases of the tumor. Receptor activator of NF-κB ligand (RANKL), a member of the tumor necrosis factor superfamily and an activator of the NF-κB signaling pathway, has emerged as a major mediator of bone loss, commonly associated with cancer and other chronic inflammatory diseases. Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), derived from the Ayurvedic medicinal plant Embelia ribes, has been shown to bind and inhibit X-linked inhibitor of apoptosis protein and inhibit inflammatory pathways. We investigated whether embelin could inhibit osteoclastogenesis-associated bone loss induced by RANKL and by tumor cells in vitro. We found that embelin suppressed the RANKL-induced differentiation of monocytes into osteoclasts. This benzoquinone also suppressed the osteoclastogenesis induced by multiple myeloma and by breast cancer cells. This effect of embelin correlated with the suppression of NF-κB activation and inhibition of IκBα phosphorylation and IκBα degradation. Inhibition of IκBα phosphorylation was due to the inhibition of IκBα kinase (IKK) activation. Furthermore, by using an inhibitor of the IKKγ or NF-κB essential modulator (NEMO), the regulatory component of the IKK complex, we showed that the NF-κB signaling pathway is mandatory for RAW 264.7 cell differentiation into osteoclasts. Thus, embelin, an inhibitor of RANKL-induced NF-κB activation has great potential as a therapeutic agent for osteoporosis and cancer-linked bone loss.


Assuntos
Benzoquinonas/farmacologia , NF-kappa B/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Ligante RANK/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Conservadores da Densidade Óssea/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , NF-kappa B/fisiologia , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Osteoporose/prevenção & controle , Transdução de Sinais/fisiologia
16.
Acta Pharmacol Sin ; 30(8): 1169-76, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19617894

RESUMO

AIM: Stromelysin 1 (matrix metalloproteinase 3; MMP-3) is an enzyme known to be involved in tumor invasion and metastasis. In this study, flavonoids from vegetables and fruits, such as quercetin, kaempferol, genistein, genistin, and daidzein, were tested for their ability to modulate the secretion and activity of MMP-3 in the MDA-MB-231 breast cancer cell line. In addition, we investigated the in vitro effects of flavonoids on MDA-MB-231 cell invasion. METHODS: The toxic concentration range of flavonoids was evaluated using the MTT assay. The ability of MDA-MB-231 cells to invade was evaluated using a modified Boyden chamber system. The activity of MMP-3 was determined by casein zymography. The secretion of MMP-3 was evaluated using Western blotting, casein zymography and confirmed by ELISA. RESULTS: Some putative flavonoids, ie, quercetin and kaempferol (flavonols), significantly inhibited the in vitro invasion of MDA-MB-231 cells in a concentration-dependent manner, with IC(50) values of 27 and 30 micromol/L, respectively. Quercetin and kaempferol also reduced MMP-3 activity in a dose-dependent manner, with IC(50) values in the range of 30 micromol/L and 45 micromol/L, respectively. None of the flavonoids had a significant effect on the secretion of MMP-3. CONCLUSION: These data show that the flavonols quercetin and kaempferol have higher anti-invasion potency and higher MMP-3 inhibitory activity than isoflavones genistein, genistin and daidzein. In contrast, neither flavonols nor isoflavones have any effect on MMP-3 secretion.


Assuntos
Neoplasias da Mama/patologia , Carcinoma/patologia , Flavonoides/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Invasividade Neoplásica/prevenção & controle , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...