Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38995521

RESUMO

The defensive role performed by exogenously supplied ascorbic acid in the cyanobacterium Nostoc muscorum Meg1 against damages produced by UV-C radiation exposure was assessed in this study. Exposure to UV-C (24 mJ/cm2) significantly enhanced reactive oxygen species (ROS) (50%) along with peroxidation of lipids (21%) and protein oxidation (22%) in the organism. But, addition of 0.5 mM ascorbic acid prior to UV-C exposure showed reduction in ROS production (1.7%) and damages to lipids and proteins (1.5 and 2%, respectively). Light and transmission electron microscopic studies revealed that ascorbic acid not only protected filament breakage but also restricted severe ultrastructural changes and cellular damages in the organism. Although the growth of the organism was repressed up to 9% under UV-C treatment within 15 days, a pre-treatment with ascorbic acid led to growth enhancement by 42% in the same period. Various growth parameters such as photo-absorbing pigments (phycoerythrin, phycocyanin, allophycocyanin, chlorophyll a, and carotenoids), water splitting complex (WSC), D1 protein, RuBisCO, glutamine synthetase and nitrogenase activities in the UV-C treated organism were seen to be relatively intact in the presence of ascorbic acid. Thus, a detailed analysis undertaken in the present study was able to demonstrate that ascorbic acid not only act as first responder against harmful UV-C radiation by down-regulating ROS production, it also accelerated the growth performance in the organism in the post UV-C incubation period as an immediate response to an adverse experience presented in the form of UV-C radiation exposure.

2.
Environ Pollut ; 349: 123994, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636835

RESUMO

Microplastics (MPs) pollution and their impact on plants have become a global threat, but their effect at the molecular level remains scarce. This study aims to gain insight into the effects of polyvinylchloride microplastic (PVC-MP) on tomato plants at the genetic and protein levels. In this study, we found that increasing concentrations of PVC-MP (2.5, 5,7.5, and 10% w/w) in the soil did not cause any phytotoxic (chlorosis or necrosis) symptoms but it did result in a dose-dependent reduction in plant growth-related parameters, such as height, leaf area, stem diameter, and plant fresh and dry weight. Additionally, the number of secondary roots was reduced while the primary roots were elongated. Furthermore, PVC-MP also caused a significant decrease in light-harvesting pigments chlorophylls, and carotenoids while increasing the level of reactive oxygen species (ROS) and lipid peroxidation in plants. Microscopic analysis of the roots revealed the uptake of PVC-MP of size less than 10 µm. Micro- and macro-element analysis showed changes in concentrations of Ca, Cu, Fe, Mg, Mn, Ni, and Zn, upon PVC-MP exposure. Results from western blotting and q-PCR showed that higher doses of PVC-MP significantly reduced the CO2-fixing enzyme RuBisCO and D1 proteins of PSII at both protein and transcript levels. These findings suggest that lower levels of light-harvesting pigments, D1 protein, RuBisCO, and modulation of nutrient absorption are among the factors responsible for growth suppression in tomato plants upon exposure to PVC-MP. As tomato plants are economically significant crops, an increase in PVC-MP in agricultural fields may have a detrimental influence on crop production, resulting in economic loss.


Assuntos
Microplásticos , Fotossíntese , Cloreto de Polivinila , Poluentes do Solo , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Fotossíntese/efeitos dos fármacos , Microplásticos/toxicidade , Nutrientes/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Clorofila/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Indian J Med Microbiol ; 43: 58-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36371334

RESUMO

PURPOSE: Seroepidemiology and genomic surveillance are valuable tools to investigate infection transmission during a pandemic. North East (NE) India is a strategically important region being the gateway connecting the country with Southeast Asia. Here, we examined the spread of SARS-CoV-2 in NE India during the first and second waves of COVID-19 using serological and whole genome sequencing approaches. METHODS: qRT-PCR analysis was performed on a selected population (n â€‹= â€‹16,295) from June 2020 to July 2021, and metadata was collected. Immunoassays were studied (n â€‹= â€‹2026) at three-time points (August 2020, February 2021, and June 2021) and in a cohort (n â€‹= â€‹35) for a year. SARS-CoV-2 whole genomes (n â€‹= â€‹914) were sequenced and analyzed with those obtained from the databases. RESULTS: Test positivity rates (TPR) in the first and second waves were 6.34% and 6.64% in Assam, respectively, and a similar pattern was observed in other NE states. Seropositivity in the three time points was 10.63%, 40.3%, and 46.33%, respectively, and neutralizing antibody prevalence was 90.91%, 52.14%, and 69.30%, respectively. Persistence of pan-IgG-N SARS-CoV-2 antibody for over a year was observed among three subjects in the cohort group. Normal variants dominated the first wave, while B.1.617.2 and AY-sublineages dominated the second wave in the region. The prevalence of the variants co-related well with high TPR and seropositivity rate in the region and identified mostly among vaccinated individuals. CONCLUSION: The COVID-19 first wave in the region witnessed low transmission with the evolution of diverse variants. Seropositivity increased during the study period with over half of the individuals carrying neutralizing antibodies against SARS-CoV-2. High infection and seroprevalence in NE India during the second wave were associated with the dominant emergence of variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Soroepidemiológicos , SARS-CoV-2/genética , COVID-19/epidemiologia , Genômica , Índia/epidemiologia , Anticorpos Neutralizantes
4.
Methods Mol Biol ; 2131: 329-347, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32162265

RESUMO

Mycobacterium sp. is exhibiting complex evolution of antimicrobial resistance (AMR) and can therefore be considered as a serious human pathogen. Many strategies were employed earlier to evade the pathogenesis but AMR became threatened. Molecular tools employing bacteriophage can be an alternative to effective treatment against Mycobacterium. Phage treatment using phage-encoded products, such as lysins, causes lysis of cells; particularly bacteria could be used instead of direct use of these bacteriophages. Modern technologies along with bacteriophage strategies such as in silico immunoinformatics approach, machine learning, and artificial intelligence have been described thoroughly to escape the pathogenesis. Therefore, understanding the molecular mechanisms could be a possible alternative to evade the pathogenesis.


Assuntos
Micobacteriófagos/fisiologia , Infecções por Mycobacterium/prevenção & controle , Mycobacterium/crescimento & desenvolvimento , Animais , Biologia Computacional , Enzimas/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Aprendizado de Máquina , Mycobacterium/efeitos dos fármacos , Mycobacterium/virologia , Infecções por Mycobacterium/tratamento farmacológico , Terapia por Fagos
5.
Ecotoxicol Environ Saf ; 181: 274-283, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31201959

RESUMO

Although UV-C radiation has been in use for killing unwanted cyanobacteria, experiments with lower doses of UV-C radiation instead showed induction of growth related parameters and enhanced biomass production in the cyanobacterium Nostoc muscorum Meg1. When the cyanobacterial cultures were exposed to UV-C radiation of varying doses (6, 12 and 18 mJ/cm2), concentrations of various photo-absorbing pigments, RuBisCO and D1 protein of PSII; activities of oxygen evolving complex, nitrogenase and glutamine synthetase were significantly increased upon 6 and 12 mJ/cm2 UV-C radiation exposures. Resulting higher photosynthetic performance was evident from the augmentation in carbohydrate content by ∼49% under single exposure to 6 mJ/cm2 UV-C by fifteenth day. The increased performances of both RuBisCO and D1 proteins were in part also due to induction at the genetic level as seen from the increase in their mRNA and protein levels under treatment. Similar increase was also observed in protein (16%) and in lipid contents (43%) that reflected an upsurge in the total biomass. Highest biomass (463 mg/L/d) was noted in culture exposed to 6 mJ/cm2 UV-C radiation, representing a ∼25% increase. Furthermore the possibility of this organism using part of the incident UV-C radiation as an additional source of energy was deduced from an experiment where the thylakoid membranes excited within UV (226-400 nm) range showed emission at longer wavelengths with an emission maximum at ∼640 nm. Thus this work provides evidence that lower UV-C doses can potentially augment cyanobacterial growth and use of unstandardized UV-C doses for restricting cyanobacterial growth may in fact produce contrary result.


Assuntos
Nostoc muscorum/efeitos da radiação , Raios Ultravioleta , Glutamato-Amônia Ligase/metabolismo , Nitrogenase/metabolismo , Nostoc muscorum/enzimologia , Nostoc muscorum/crescimento & desenvolvimento , Nostoc muscorum/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
6.
Aquat Toxicol ; 213: 105228, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31229888

RESUMO

The present work was conducted to study how restoration of perturbed oxidant and antioxidant homeostasis is achieved in the UV-C radiation exposed cells of cyanobacterium Nostoc muscorum Meg1. Exposure to varying doses of UV-C radiation (6, 12, 18 and 24 mJ/cm2) showed damage to ultrastructures especially cytoplasmic membrane, cell wall and organisation of thylakoid membranes of the cyanobacterium under transmission electron microscope (TEM). All doses of UV-C exposure significantly induced most of the enzymatic antioxidant {catalase, superoxide dismutase (SOD) and glutathione reductase (GR)} activities, their protein levels (western blot analysis) and mRNA levels (real time PCR analysis) within the first hour of post UV-C radiation incubation period. In the same way, contents of many non-enzymatic antioxidants such as ascorbic acid, reduced glutathione, proline, phenol and flavonoids were also augmented in response to such UV-C radiation exposure. Although notable increase in ROS level was only seen in cultures treated with 24 mJ/cm2 UV-C exposure which also registered increase in protein oxidation (22%) and lipid peroxidation (20%), this boost in both enzymatic and non-enzymatic antioxidants was significant in all radiation exposed cells indicating cell's preparation to combat rise in oxidants. Further, albeit all antioxidants increased considerably, their levels were restored back to control values by day seventh re-establishing physiological redox state for normal metabolic function. The combined efficiency of the enzymatic and non-enzymatic antioxidants were so effective that they were able to bring down the increase levels of ROS, lipid peroxidation and protein oxidation to the physiological levels within 1 h of radiation exposure signifying their importance in the defensive roles in protecting the organism from oxidative toxicity induced by UV-C radiation exposure.


Assuntos
Antioxidantes/metabolismo , Homeostase , Nostoc muscorum/fisiologia , Nostoc muscorum/efeitos da radiação , Oxidantes/metabolismo , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Cisteína/metabolismo , Flavonoides/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Nostoc muscorum/ultraestrutura , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Ecotoxicol Environ Saf ; 155: 171-179, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555235

RESUMO

With the intention of getting an insight into the differential effect of UV-C radiation on the N2-fixing heterocystous cyanobacterium Nostoc muscorum Meg1, various aspects of carbon and nitrogen metabolism was evaluated in the organism. Exposure to different doses of UV-C (6, 12, 18 and 24 mJ/cm2) showed that among various photo-absorbing pigments, phycobiliproteins were most sensitive. Oxygen evolving complex (OEC) activity measured as net oxygen evolution rate decreased by 63% upon 24 mJ/cm2 exposure. Western blot analysis established that D1 protein of PSII was highly sensitive and its levels decreased even at a radiation dose as low as 6 mJ/cm2. In contrast, levels of the Calvin cycle enzyme RuBisCO was increased at 6 and 12 mJ/cm2 doses but the level decreased drastically (84%) at higher dose (24 mJ/cm2). The nitrogenase enzyme activity decreased at all doses but the ammonia assimilating enzyme glutamine synthetase (GS) activity recorded increase at the lower doses. The reactive oxygen species (ROS) and lipid peroxidation increased upon UV-C exposure. Transmission electron microscopic observation revealed damage to ultrastructure especially the thylakoid membrane organization, aggregation of dissolving phycobilisomes and loss of caboxysomes. Interestingly, sub-lethal radiation (6 and 12 mJ/cm2) dose exposures increased the growth rate in the organism when growth was measured over a period of 11 days after radiation exposure.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Nostoc muscorum/efeitos da radiação , Raios Ultravioleta , Glutamato-Amônia Ligase/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Microscopia Eletrônica de Transmissão , Nitrogenase/metabolismo , Nostoc muscorum/crescimento & desenvolvimento , Nostoc muscorum/metabolismo , Nostoc muscorum/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...