Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 650: 123722, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110012

RESUMO

Chronic wounds have become a serious global health issue. In this study, we investigated the effect of increasing fucoidan (FD) concentration on the characteristics of nanofibers and their wound healing potential at in vitro as well as in vivo level. The results showed that increasing FD content (0.25 to 1 %) led to an significant increase in nanofiber diameter (487.7 ± 125.39 to 627.9 ± 149.78 nm), entrapment efficiency (64.26 ± 2.6 to 94.9 ± 3.1 %), and water uptake abilities (436.5 ± 1.2 to 679.7 ± 11.3 %). However, the in vitro biodegradation profile decreased with an increase in FD concentration. Water vapor transmission rate analysis showed that it was within the standard range for all FD concentrations. Nanofibers with 1 % PVA/DX/FD exhibited slow-release behavior, suggesting prolonged FD availability at the wound site. In vivo studies in rats with full-thickness wounds demonstrated that applying 1 % FD-enriched PVA/DEX nanofibers significantly (p < 0.0001) improved mean wound area closure. These findings suggest that FD-enriched nanofibers have immense potential as a wound dressing material in future if explored further.


Assuntos
Antibacterianos , Nanofibras , Ratos , Animais , Antibacterianos/farmacologia , Dextranos/farmacologia , Álcool de Polivinil , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...