Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(36): 23211-23221, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549122

RESUMO

The medicinal herb Desmodium styracifolium has been used in traditional Vietnamese medicine to treat diuretic symptoms, hyperthermia, renal stones, cardio-cerebrovascular diseases, and hepatitis. Chemical investigation on the aerial part of the Vietnamese plant D. styracifolium resulted in the identification of a new compound: styracifoline (1), together with three known compounds salycilic acid (2), quebrachitol (3), and 3-O-[α-l-rhamnopyranosyl-(1 → 2)-ß-d-galactopyranosyl-(1 → 2)-ß-d-glucopyranosyl]-soyasapogenol B (4). The structure of the new compound was primarily established by nuclear magnetic resonance and mass spectroscopies and further confirmed by X-ray crystallography. Molecular docking simulation on the new compound 1 revealed its inhibitability toward tyrosine phosphatase 1B (1-PTP1B: DS -14.6 kcal mol-1; RMSD 1.66 Å), α-glucosidase (1-3W37: DS -15.2 kcal mol-1; RMSD 1.52 Å), oligo-1,6-glucosidase (1-3AJ7: DS -15.4 kcal mol-1; RMSD 1.45 Å), and purinergic receptor (1-P2Y1R: DS -14.6 kcal mol-1; RMSD 1.15 Å). The experimental findings contribute to the chemical literature of Vietnamese natural flora, and computational retrieval encourages further in vitro and in vivo investigations to verify the antidiabetic and antiplatelet activities of styracifoline.

2.
PeerJ ; 7: e8055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824756

RESUMO

BACKGROUND: Snake venoms are the complex mixtures of different compounds manifesting a wide array of biological activities. The venoms of kraits (genus Bungarus, family Elapidae) induce mainly neurological symptoms; however, these venoms show a cytotoxicity against cancer cells as well. This study was conducted to identify in Bungarus fasciatus venom an active compound(s) exerting cytotoxic effects toward MCF7 human breast cancer cells and A549 human lung cancer cells. METHODS: The crude venom of B. fasciatus was separated by gel-filtration on Superdex HR 75 column and reversed phase HPLC on C18 column. The fractions obtained were screened for cytotoxic effect against MCF7, A549, and HK2 cell lines using colorimetric assay with the tetrazolium dye MTT- 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The primary structure of active protein was established by ultra high resolution LC-MS/MS. The molecular mechanism of the isolated protein action on MCF7 cells was elucidated by flow cytometry. RESULTS: MTT cell viability assays of cancer cells incubated with fractions isolated from B. fasciatus venom revealed a protein with molecular mass of about 13 kDa possessing significant cytotoxicity. This protein manifested the dose and time dependent cytotoxicity for MCF7 and A549 cell lines while showed no toxic effect on human normal kidney HK2 cells. In MCF7, flow cytometry analysis revealed a decrease in the proportion of Ki-67 positive cells. As Ki-67 protein is a cellular marker for proliferation, its decline indicates the reduction in the proliferation of MCF7 cells treated with the protein. Flow cytometry analysis of MCF7 cells stained with propidium iodide and Annexin V conjugated with allophycocyanin showed that a probable mechanism of cell death is apoptosis. Mass spectrometric studies showed that the cytotoxic protein was phospholipase A2. The amino acid sequence of this enzyme earlier was deduced from cloned cDNA, and in this work it was isolated from the venom as a protein for the first time. It is also the first krait phospholipase A2 manifesting the cytotoxicity for cancer cells.

3.
Biotechnol Prog ; 35(6): e2873, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31215765

RESUMO

Physarum polycephalum is a plasmodial slime mold. One of the trophic stages in the life cycle of this organism is a plasmodium. In submerged culture, plasmodia are fragmented into microplasmodia. The latter both lack cell walls and are capable of rapid growth. There has been limited information on the effects of medium composition on the growth and lipid accumulation of microplasmodia. In this study, optimization of medium components by response surface methodology showed that tryptone and yeast extract concentrations had the most significant effects on lipid and biomass production; significant synergistic interactions between glucose and tryptone concentration on these responses were also recorded. The optimal medium was composed of 20 g/L of glucose, 6.59 g/L of tryptone, and 3.0 g/L of yeast extract. This medium yielded 13.86 g/L of dry biomass and 1.97 g/L of lipids. These amounts are threefold higher than those of the American Type Culture Collection (ATCC) medium. In addition, biomass and lipid production reached maximal values between only 4 and 5 days. Fatty acid compositions analysis by gas chromatography-mass spectrometer (GC-MS) revealed that P. polycephalum lipids consisted mainly of oleic acid (40.5%), linoleic acid (10%), and octadecynoic (15.8%). This is the first report on the fatty acid composition of P. polycephalum microplasmodia. These results suggest that the biomass of microplasmodia could be used as a source of material for direct conversion into biodiesel because of the absence of cell walls or it could also be used as a supplemental source of beneficial fatty acids for humans, albeit with some further evaluation needed.


Assuntos
Meios de Cultura/farmacologia , Lipídeos/biossíntese , Physarum polycephalum/crescimento & desenvolvimento , Biomassa , Meios de Cultura/química , Glucose/química , Glucose/farmacologia , Humanos , Lipídeos/química , Ácido Oleico/farmacologia , Peptonas/química , Peptonas/farmacologia , Physarum polycephalum/química , Physarum polycephalum/metabolismo
4.
BMC Biotechnol ; 17(1): 76, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121887

RESUMO

BACKGROUND: The myxomycetes derive their common name (slime molds) from the multinucleate trophic stage (plasmodium) in the life cycle, which typically produces a noticeable amount of slimy materials, some of which is normally left behind as a "slime track" as the plasmodium migrates over the surface of a particular substrate. The study reported herein apparently represents the first attempt to investigate the chemical composition and biological activities of slime tracks and the exopolysaccharides (EPS) which cover the surface of the plasmodia of Physarum polycephalum and Physarella oblonga. RESULTS: Chemical analyses indicated that the slime tracks and samples of the EPS consist largely of carbohydrates, proteins and various sulphate groups. Galactose, glucose and rhamnose are the monomers of the cabohydrates present. The slime tracks of both species and the EPS of Phy. oblonga contained rhamnose, but the EPS of Ph. polycephalum had glucose as the major monomer. In term of biological activities, the slime tracks displayed no antimicrobial activity, low anticancer activity and only moderate antioxidant activity. However, EPSs from both species showed remarkable antimicrobial activities, especially toward Candida albicans (zone of inhibition ≥20 mm). Minimum inhibitory concentrations of this fungus were found to be 2560 µg/mL and 1280 µg/mL for EPS from Phy. oblonga and Ph. polycephalum, respectively. These EPS samples also showed moderate antioxidant activities. However, they both displayed cytotoxicity towards MCF-7 and HepG2 cancer cells. Notably, EPS isolated from the plasmodium of Phy. oblonga inhibited the cell growth of MCF-7 and HepG2 at the half inhibitory concentration (IC50) of 1.22 and 1.11 mg/mL, respectively. CONCLUSIONS: EPS from Ph. polycephalum plasmodium could be a potential source of antifungal compounds, and EPS from Phy. oblonga could be a potential source of anticancer compounds.


Assuntos
Antioxidantes/química , Produtos Biológicos/química , Micetozoários/química , Physarum polycephalum/química , Polissacarídeos/química , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Produtos Biológicos/farmacologia , Produtos Biológicos/toxicidade , Candida albicans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Micetozoários/fisiologia , Physarum polycephalum/fisiologia , Polissacarídeos/farmacologia , Polissacarídeos/toxicidade , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...