Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(4): e2300581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38229212

RESUMO

This study aimed to evaluate the in silico and in vitro inhibitory effect of the combined use of galantamine (GAL) and donepezil (DON) against acetylcholinesterase and butyrylcholinesterase (BuChE) enzymes. In silico and in vitro cholinesterase analysis were carried out for GAL and DON alone and combined. Molecular modeling studies were carried out (docking analysis, molecular dynamics simulation, and quantum theory of atoms in molecules). Cholinesterase's inhibitory activities by modified Ellman's method and the drug combination effect using the Chou-Talalay method were assayed. GAL/DON combination showed the co-occupancy of the ligands in both enzymes through in silico studies. Regarding in vitro BuChE inhibition analyses, three of five combinations showed an interaction between GAL and DON at the threshold of additive affect (0.9 < CI < 1.1), with a tendency toward a synergistic effect for higher concentrations. This is the first report showing the efficacy of the GAL/DON combinations inhibiting BuChE, showing the importance of analyzing the behavior of different ligands when co-occupancy into the active site is possible. These combinations might be a possible therapy to improved efficacy, reduced doses, minor side effects, and high levels of the neurotransmitter in the synaptic space for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Galantamina , Humanos , Galantamina/farmacologia , Butirilcolinesterase/metabolismo , Donepezila/farmacologia , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140431

RESUMO

This research was designed to investigate the metabolite profiling, phenolics, and flavonoids content as well as the potential nematicidal properties of decoction (ZpDe), orange-yellow resin (ZpRe) and essential oil (ZpEO) from Argentinean medicinal plant Zuccagnia punctata Cav. Additionally, the antioxidant and antibacterial properties of ZpDe and ZpEO were determined. Metabolite profiling was obtained by an ultrahigh-resolution liquid chromatography MS analysis (UHPLC-ESI-QTOF/OT-MS-MS) and GCMS. The nematicidal activity was assayed by a standardized method against Meloidogyne incognita. The antioxidant properties were screened by four methods: (2,2-diphenyl-1-picrylhydrazyl assay (DPPH), Trolox equivalent antioxidant activity assay (TEAC), ferric-reducing antioxidant power assay (FRAP), and lipid peroxidation in erythrocytes (ILP). The antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) rules. The ZpDe, ZpRe and ZpEO displayed a strong nematicidal activity with an LC50 of 0.208, 0.017 and 0.142 mg/mL, respectively. On the other hand, the ZpDe showed a strong DPPH scavenging activity (IC50 = 28.54 µg/mL); ILP of 87.75% at 250 µg ZpDe/mL and moderated antimicrobial activity. The ZpEO showed promising activity against a panel of yeasts Candida albicans and non-albicans (ATCC and clinically isolated) with MIC values from 750 to 1500 µg/mL. The ZpDe showed a content of phenolics and flavonoid compounds of 241 mg GAE/g and 10 mg EQ/g, respectively. Fifty phenolic compounds were identified in ZpDe by ultrahigh-resolution liquid chromatography (UHPLC-PDA- Q-TOF-MS) analysis, while forty-six phenolic compounds were identified in ZpRe by UHPLC-ESI-Q-OT-MS-MS and twenty-nine in ZpEO using a GC-MS analysis, updating the knowledge on the chemical profile of this species. The results support and standardize this medicinal plant mainly as a potential environmentally friendly and sustainable bionematicide for the control of Argentinean horticultural crops including tomatoes and peppers and as a source of antimicrobial and antioxidant compounds which could be further explored and exploited for potential applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37619666

RESUMO

Global warming is a major threat to biodiversity, the increase in mean temperature plus the higher rate and intensity of heat waves can severely affect organisms by exposing them to temperatures beyond their tolerance limits. Desert ectotherms are particularly vulnerable due to their dependence on environmental temperatures in an extreme habitat. Thermal tolerance changes depending on environmental conditions, studying these fluctuations provides a better understanding of species susceptibility to global warming. Tenebrionids are successful desert-inhabiting ectotherm taxa because of a series of adaptations for heat tolerance and water loss. We studied the seasonal variation (acclimatization) of thermal tolerance in Megelenophorus americanus, a widely distributed species in the Monte Desert (Argentina). To do this, we measured environmental and operative temperatures: body temperature (Tb), soil temperature (Ts), air temperature (Ta), environmental temperature (Te) and maximum temperature (Tmax), and tolerance proxies volunteer thermal maximum (VTmax), Fluid release (FR) and critical thermal maximum (CTmax) in a population of M. americanus from San Juan province, Argentina from October to March (full activity season). We found that Ts and Ta are accurate predictors of Tb, suggesting thermoconformism. All tolerance proxies showed differences among months, suggesting a natural acclimatization process in situ. Insects were found operating beyond VTmax (thermal stress) but they were far from reaching CTmax under natural conditions. Organisms present different degrees of tolerance plasticity that should be considered when predicting potential impacts of climate change.


Assuntos
Besouros , Termotolerância , Animais , Aquecimento Global , Mudança Climática , Clima
4.
Phytomedicine ; 114: 154788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037085

RESUMO

BACKGROUND: Chagas disease (CD), caused by Trypanosoma cruzi, represents a health threat to around 20 million people worldwide. Side effects of benznidazole (Bzn) cause 15-20% of patients to discontinue their treatment. Evidence has increased in favor of the use of drug combinations to improve the efficacy and tolerance of the treatment. Natural products are well known to provide structures that could serve as new drugs or scaffolds for CD treatment. Spp of the Amaryllidoideae sub family of Amaryllidaceae family are known by their bioactives alkaloids, which have been reported by their antiparasitic activities. PURPOSE: To evaluate the anti-T. cruzi activity of the isolated alkaloid candimine (Cnd) from Hippeastrum escoipense Slanis & Huaylla; and to assess the combination effect between Cnd and Bzn against different life stages of T. cruzi parasites. METHODS: The chemical profile of H. escoipense alkaloids extract (AE-H. escoipense), including quantitation of Cnd was performed through GC/MS and UPLC-MS/MS techniques. Subsequently, Cnd was isolated using Shephadex LH-20. Then, the AE-H. escoipense and Cnd were tested against T. cruzi, (epimastigotes, trypomastigotes, and amastigotes) by in vitro proliferation and viability assays. The cytotoxicity was evaluated against Vero and HepG2 mammalian cells. The ultrastructural analysis was perform by transmission electron microscopy (TEM) and mitochondrial activity was carried out by MTT assay. Drug combination assay between Cnd and Bzn was evaluated using the Chou-Talalay method. RESULTS: The AE-H. escoipense and Cnd showed high and specific anti-T. cruzi activity, comparable to Bzn. Cnd induces ultrastructural changes in T. cruzi, such as vacuolization, membrane blebs, and increased mitochondrial activity. Regarding the interaction between Cnd and Bzn, it generates synergism in the combinations of 0.25×IC50 in epimastigotes, 2×IC50 in trypomastigotes+amastigotes, and 0.25, 2, and 4×IC50 in amastigotes. CONCLUSION: The synergism between Cnd and Bzn indicates that the combination at the concentration of 4×IC50 could be useful as an effective new therapy against CD in the chronic stage. Thus, Cnd isolated from the leaves of H. escoipense emerges as potential candidate for the development of a new drug for the treatment of CD.


Assuntos
Alcaloides , Amaryllidaceae , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Doença de Chagas/tratamento farmacológico , Alcaloides/farmacologia , Tripanossomicidas/farmacologia , Mamíferos
5.
Microorganisms ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677436

RESUMO

BACKGROUND: Hippeastrum species have a wide range of biological properties. In Argentina, this genus comprises ten widely distributed species. PURPOSE: To evaluate the antiparasitic and anticholinesterase activities and chemical profiles of seven Argentinean Hippeastrum species and determine the synergism between the major isolated alkaloid-montanine-and benznidazole in anti-Trypanosoma cruzi activity. METHODS: The antiparasitic activity was evaluated through antiproliferative and viability assays against T. cruzi epimastigotes. Synergism assays were performed using the Chou-Talalay method. AChE and BuChE inhibitory activities were also assessed. The alkaloid composition was obtained using GC-MS analysis. RESULTS: All extracts showed strong growth inhibition of T. cruzi epimastigote proliferation. The extracts from H. aglaiae, H. aulicum, and H. hybrid stand out for their potent and total growth inhibition, which was comparable to benznidazole. The H. reticulatum extract showed strong Acetylcholinesterase (AChE) inhibitory activities, while five species showed moderate Butyrylcholinesterase (BuChE) inhibition. Fifteen alkaloids were identified by means of GC-MS. Regarding the synergism assessment, the highest synergistic effect was obtained from the combination of montanine and benznidazole. CONCLUSION: Hippeastrum species bulb extracts from Argentina were shown to be a good source of antiparasitic alkaloids and cholinesterase inhibitors. The synergism between montanine and benznidazole emerges as a potential combination for future studies to treat Chagas disease.

6.
Antioxidants (Basel) ; 10(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525584

RESUMO

This research was designed to investigate the metabolite profiling, phenolics and flavonoids content and the potential antioxidant, antibacterial and nematicidal activities of "yellow-brown resins" from Larrea divaricata Cav (LdRe) and L. nitida Cav (LnRe). Metabolite profiling was obtained using an ultrahigh resolution liquid chromatography orbitrap MS analysis (UHPLC-ESI-OT-MS). The antioxidant properties were screened by four methods: 2,2-diphenyl-1-picrylhydrazyl assay (DPPH), trolox equivalent antioxidant activity assay (TEAC), ferric-reducing antioxidant power assay (FRAP) and lipid peroxidation in erythrocytes (LP). The antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. In addition, the potential combinatory effect was analyzed with the fractional inhibitory concentration index (FICI) values using the checkerboard design. The nematicidal activity was carried out according to a standardized protocol. LdRe and LnRe showed a strong capture of the DPPH radical withvalues around 8.4 µg resin/mL; FRAP (1.69-1.94 mgTE/ g resin), TEAC (1.08-1.09 mgTE/g resin) and LP (81-82% at 100 µg of resin/mL) assays. A strong antimicrobial activity was displayed by both resins against methicillin-sensitive Staphylococcus aureus ATCC 25923(MSSA) and methicillin-resistant S. aureus ATCC 43300(MRSA) (MICs = 16-32 µg resin/mL). Additionally, the combination of LdRe or LnRe with the antibiotic cefotaxime showed an indifferent effect (FICI values = 1-1.25), however, this combinationcould be a potential strategy to reduce the drug doses, and in this way can be a potential alternative to reduce bacterial resistance. On the other hand, the resins showed a scarce nematicidal potential toward J2 Meloidogyne incognita; an important nematode infecting horticultural crops. Phenolics compounds were identified by UHPLC-PDA-OT-MS analysis, updating the knowledge on the chemical profile of these species. These results, together with the high content of quantified phenolics and flavonoids, allow the phenolics-enriched resins of these two Larrea species to be considered as a promising sustainable source of compounds of pharmacological interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...