Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299703

RESUMO

This study describes a comparative in vitro study of the toxicity behavior of zinc oxide (ZnO) nanoparticles and micro-sized particles. The study aimed to understand the impact of particle size on ZnO toxicity by characterizing the particles in different media, including cell culture media, human plasma, and protein solutions (bovine serum albumin and fibrinogen). The particles and their interactions with proteins were characterized in the study using a variety of methods, including atomic force microscopy (AFM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Hemolytic activity, coagulation time, and cell viability assays were used to assess ZnO toxicity. The results highlight the complex interactions between ZnO NPs and biological systems, including their aggregation behavior, hemolytic activity, protein corona formation, coagulation effects, and cytotoxicity. Additionally, the study indicates that ZnO nanoparticles are not more toxic than micro-sized particles, and the 50 nm particle results were, in general, the least toxic. Furthermore, the study found that, at low concentrations, no acute toxicity was observed. Overall, this study provides important insights into the toxicity behavior of ZnO particles and highlights that no direct relationship between nanometer size and toxicity can be directly attributed.

2.
Phys Chem Chem Phys ; 24(2): 778-785, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908053

RESUMO

Nanoscale titanium carbide (TiC) is widely used in composites and energy applications. In order to design and optimize these systems and to gain a fundamental understanding of these nanomaterials, it is important to understand the atomistic structure of nano-TiC. Cluster beam experiments have provided detailed infrared vibrational spectra of numerous TixCy nanoparticles with well defined masses. However, these spectra have yet to be convincingly assigned to TixCy nanoparticle structures. Herein, using accurate density functional theory based calculations, we perform a systematic survey of likely candidate nanoparticle structures with masses corresponding to those in experiment. We calculate harmonic infrared vibrational spectra for a range of nanoparticles up to 100 atoms in size, with a focus on systems based on removing either four carbon atoms or a single titanium atom from rocksalt-structured stoichiometric TiC nanoparticles. Our calculations clearly show that Ti-deficient nanoparticles are unlikely candidates to explain the experimental spectra as such structures are highly susceptible to C-C bonding, whose characteristic frequencies are not observed in experiment. However, our calculated infrared spectra for C-deficient nanoparticles have some matching features with the experimental spectra but tend to have more complex infrared spectra with more peaks than those obtained from experiment. We suggest that the discrepancy between experiment and theory may be largely due to thermally induced anharmonicities and broadening in the latter nanoparticles, which are not be accounted for in harmonic vibrational calculations.

3.
Chem Commun (Camb) ; 55(85): 12797-12800, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31593204

RESUMO

Transition Metal Carbides (TMCs) are proposed as replacements for and expensive late Transition Metals (TMs) as heterogeneous catalysts, often implying hydrogenation reactions or steps. Present density functional theory based calculations support using group IV TMCs and δ-MoC as viable TM alternatives, given the moderate exoergicity and affordable reaction step energy barriers.

4.
J Am Chem Soc ; 141(13): 5303-5313, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30848129

RESUMO

Methane is an extremely stable molecule, a major component of natural gas, and also one of the most potent greenhouse gases contributing to global warming. Consequently, the capture and activation of methane is a challenging and intensively studied topic. A major research goal is to find systems that can activate methane, even at low temperatures. Here, combining ultrahigh vacuum catalytic experiments, X-ray photoemission spectra, and accurate density functional theory (DFT) based calculations, we show that small Ni clusters dispersed on the (001) surface of TiC are able to capture and dissociate methane at room temperature. Our DFT calculations reveal that two-dimensional Ni clusters are responsible for this chemical transformation, confirming that the lability of the supported clusters appears to be a critical aspect in the strong adsorption of methane. A small energy barrier of 0.18 eV is predicted for CH4 dissociation into adsorbed methyl and atomic hydrogen species. In addition, the calculated reaction free energy profile at 300 K and 1 atm of CH4 shows no effective energy barriers in the system. Comparison with other reported systems which activate methane at room temperature, including oxide and zeolite-based materials, indicates that a different chemistry takes place on our metal/carbide system. The discovery of a carbide-based surface able to activate methane at low temperatures paves the road for the design of new types of catalysts which can efficiently convert this hydrocarbon into other added-value chemicals, with implications in climate change mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...