Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 411(4): 765-80, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21726567

RESUMO

DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Western Blotting , Pegada de DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/genética , Mutação , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência do Ácido Nucleico
2.
Virology ; 376(1): 225-35, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18455214

RESUMO

The vaccinia virus core contains a 195 kb double stranded DNA genome, a multi-subunit RNA polymerase, transcription initiation and termination factors and mRNA processing enzymes. Upon infection, vaccinia virus early gene transcription takes place in the virus core. Transcription initiates at early promoters and terminates in response to a termination motif, UUUUUNU, in the nascent mRNA. Early gene transcription termination requires the vaccinia virus termination factor, VTF, a single stranded DNA-dependent ATPase, and NPH I, the Rap94 subunit of the virion RNA polymerase, as well as the presence of the UUUUUNU motif in the nascent RNA. The position of UUUUUNU in the ternary complex suggests that it serves as a site of interaction with one or more components of the transcription termination complex. In order to identify the factor(s) that interact with UUUUUNU a series of direct UV photo crosslinking and ribonuclease A protection studies were undertaken. Through these analyses both VTF and Rap94 were shown to interact with UUUUUNU in the isolated ternary complex. Evidence indicates that the interaction is not mutually exclusive. VTF was shown to bind to UUUUUNU through the N-terminal domain of the large D1 subunit. Furthermore, VTF protects from RNAse A digestion both the 5' region of the nascent transcript as well as a large central component containing UUUUUNU. The addition of an oligonucleotide containing the (5Br)U9 sequence both directly inhibits transcription termination, in vitro and inhibits UV photo crosslinking of VTF to the nascent RNA in the ternary complex. These results support a model in which the availability of the UUUUUNU motif outside of the transcribing RNA polymerase permits binding of both transcription termination factors, VTF and Rap94, to UUUUUNU. The assembly of this termination complex initiates the transcription termination sequence.


Assuntos
RNA Viral/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo
3.
Virology ; 376(1): 211-24, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18433825

RESUMO

Vaccinia virus early gene transcription requires the vaccinia termination factor, VTF, nucleoside triphosphate phosphohydrolase I, NPH I, ATP, the virion RNA polymerase, and the motif, UUUUUNU, in the nascent RNA, found within 30 to 50 bases from the poly A addition site, in vivo. In this study, the relationships among the vaccinia early gene transcription termination efficiency, termination motif specificity, and the elongation rate were investigated. A low transcription elongation rate maximizes termination efficiency and minimizes specificity for the UUUUUNU motif. Positioning the termination motif over a 63 base area upstream from the RNA polymerase allowed efficient transcript release, demonstrating a remarkable plasticity in the transcription termination complex. Efficient transcript release was observed during ongoing transcription, independent of VTF or UUUUUNU, but requiring both NPH I and either ATP or dATP. This argues for a two step model: the specifying step, requiring both VTF and UUUUUNU, and the energy-dependent step employing NPH I and ATP. Evaluation of NPH I mutants for the ability to stimulate transcription elongation demonstrated that ATPase activity and a stable interaction between NPH I and the Rap94 subunit of the viral RNA polymerase are required. These observations demonstrate that NPH I is a component of the elongating RNA polymerase, which is catalytically active during transcription elongation.


Assuntos
Regiões Terminadoras Genéticas/genética , Transcrição Gênica/genética , Vaccinia virus/genética , Trifosfato de Adenosina/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Modelos Biológicos , Nucleosídeo-Trifosfatase/genética , Nucleosídeo-Trifosfatase/metabolismo , RNA Viral/biossíntese
4.
Virology ; 349(2): 359-70, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16460779

RESUMO

Prior efforts demonstrated that RNA oligonucleotides containing the transcription termination signal UUUUUNU stimulate premature termination of vaccinia virus early gene transcription, in vitro. This observation suggests that viral transcription termination may be an attractive target for the development of anti-poxvirus agents. Since short RNA molecules are readily susceptible to nuclease digestion, their use would require stabilizing modifications. In order to evaluate the effect of both ribose and uracil modifications of the U5NU signal on early gene transcription termination, UTP derivatives harboring modifications to the uracil base, the 2' position of the ribose sugar and the phosphodiester bond were examined in an in vitro vaccinia virus early gene transcription termination system. Incorporation of 4-S-U, 5-methyl-U, 2-S-U, pseudo U and 2'-F-dU into the nascent transcript inhibited transcription termination. 6-aza-U, 2'-amino-U, 2'-azido-U and 2'-O methyl-U inhibited transcription elongation resulting in the accumulation of short transcripts. The majority of the short transcripts remained in the ternary complex and could be chased into full-length transcripts. Initially, derivatives of all uridines in the termination signal were tested. Partial modification of the termination signal reduced termination activity, as well. Introduction of 2'-O methyl ribose to the first three uridines of the U9 termination signal reduced the ability of U9 containing oligonucleotides to stimulate in vitro transcription termination, in trans. Further modifications eliminated this activity. Thus, viral early gene transcription termination demonstrates a rigorous requirement for a U5NU signal that is unable to tolerate modification to the base or sugar. Additionally, VTF was shown to enhance transcription elongation through the T9 sequence in the template. These results suggest that VTF may play a subtle role in early gene transcription elongation in addition to its known function in mRNA cap formation, early gene transcription termination and intermediate gene transcription initiation.


Assuntos
Ribose/análogos & derivados , Transcrição Gênica/efeitos dos fármacos , Uridina Trifosfato/análogos & derivados , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , Ribose/química , Ribose/farmacologia , Relação Estrutura-Atividade , Uridina Trifosfato/química , Uridina Trifosfato/farmacologia , Vaccinia virus/crescimento & desenvolvimento
5.
Virology ; 310(1): 109-17, 2003 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-12788635

RESUMO

Vaccinia virus nucleoside triphosphate phosphohydrolase I (NPH I) is an essential early gene transcription termination factor. The C-terminal end of NPH I binds to the N-terminal end of the H4L subunit (RAP94) of the virion RNA polymerase. This interaction is required for transcription termination and transcript release. To refine our understanding of the specific amino acids in the C-terminal end of NPH I involved in binding to H4L, and to develop a collection of mutations exhibiting various degrees of activity to be employed in in vivo studies, we prepared a set of short deletions, and clustered substitutions of charged amino acids to alanine, or bulky hydrophobic amino acids to alanine mutations. These NPH I mutant proteins were expressed, purified, and tested for ATPase activity, binding to H4L, and transcription termination activity. Most mutations in amino acids 609 to 631 exhibited reduced activity. Deletion of the terminal five amino acids (627-631), or substitution of Y(629) with alanine or glutamic acid, dramatically reduced NPH I mediated transcription termination. Deletion of the terminal F(631), or substitution of F(631) with alanine, reduced binding to H4L and eliminated termination activity. These observations demonstrate that the terminal five amino acids directly participate in binding to RNA polymerase and in early gene transcription termination.


Assuntos
Hidrolases Anidrido Ácido/química , RNA Polimerases Dirigidas por DNA/química , Transcrição Gênica , Vaccinia virus/enzimologia , Proteínas Virais/química , Hidrolases Anidrido Ácido/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Nucleosídeo-Trifosfatase , Subunidades Proteicas , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...