Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638592

RESUMO

This study investigates the complex interplay among innovation, research and development (R&D), and entrepreneurship within the context of European nations. The focus of the study is also on the contributory role of tertiary educational institutions in nurturing entrepreneurial activities. To deepen the understanding of these multifaceted relationships and their subsequent impact on regional economies, the research introduces a novel metric termed the Innovation Readiness Environment (IRE) index. This index combines various indicators such as R&D expenditure, patenting rates, firm size, and educational levels, thereby providing a framework for evaluating firms' innovative capabilities and entrepreneurial success in a given region. Utilization of this index offers policymakers and stakeholders a nuanced understanding of the regional innovation ecosystem, facilitating the identification of strengths and deficiencies. This, in turn, enables the formulation of targeted policy interventions to enhance innovation and entrepreneurship. One relevant conclusion drawn from this study is the pivotal role of tertiary education in catalyzing entrepreneurial ventures. The findings posit that higher levels of entrepreneurial education significantly supplement an individual's likelihood of entrepreneurial success by imparting the requisite skills and knowledge indispensable in a competitive business milieu. By fostering an environment conducive to innovation, higher education institutions emerge as critical agents in cultivating entrepreneurial acumen and stimulating economic expansion. The study further incorporates a spatial analytical framework to elucidate the regional specificities of innovation at the pan-European scale.

2.
Phys Chem Chem Phys ; 24(17): 10588-10598, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35446319

RESUMO

Real-time dynamics of the electronically excited open-ring isomer of 1,2-bis(2-methylbenzo[b]thiophen-3-yl)perfluorocyclopentene (BTF6) and 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene (PTF6) molecules was investigated using a set-up that associates a molecular beam, femtosecond lasers and velocity map imaging. The molecules were either free in the gas phase or bound to an argon cluster. DFT and TDDFT calculations were performed on BTF6. The calculated vertical excitation energies indicate an excitation by the pump laser towards a superposition of S5 and S6 states. The free molecule dynamics was found to follow a three wavepacket model. One describes the parallel conformer (P) of these molecules. It is unreactive with respect to the ring closure reaction which is responsible for the photochromic property of these molecules. It has no observable decay at the experiment time scale (up to 350 ps). The other two wavepackets describe the reactive antiparallel conformer (AP). They are formed by an early splitting of the wavepacket that was launched initially by the pump laser. They can be considered as generated by excitation of different, essentially uncoupled, deformation modes. They subsequently evolve along independent pathways. One is directed ballistically towards a conical intersection (CI) and decays through the CI to a potential energy surface where it can no longer be detected. The other fraction of the wavepacket decays also towards undetected states but in this case the driving mechanism is a non-adiabatic electronic relaxation within a potential well of the energy surfaces where it was launched. When BTF6 and PTF6 molecules are bound to an argon cluster, the same three wavepacket model applies. The vibronic relaxation timespan is enhanced by a factor 5 and a larger fraction of AP conformers follows this pathway. In contrast, the time constant associated with the ballistic movement is enhanced by only a factor of 2.

3.
Phys Chem Chem Phys ; 20(16): 11206-11214, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29632903

RESUMO

The present work combines time-resolved photoelectron spectroscopy on isolated species with high-level data processing to address an issue which usually pertains to materials science: the electronic relaxation dynamics towards the formation of a self-trapped exciton (STE). Such excitons are common excited states in ionic crystals, silica and rare gas matrices. They are associated with a strong local deformation of the matrix. Argon clusters were taken as a model. They are excited initially to a Wannier exciton at 14 eV and their evolution towards the formation of an STE has showed an unusual type of vibronic relaxation where the electronic excitation of the cluster decreases linearly as a function of time with a 0.59 ± 0.06 eV ps-1 rate. The decay was followed for 3.0 ps, and the STE formation occurred in ∼5.1 ± 0.7 ps.

4.
Phys Chem Chem Phys ; 18(3): 1807-17, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26679547

RESUMO

Ion mobility experiments are combined with Infra-Red Multiple Photon Dissociation (IRMPD) spectroscopy and quantum chemical calculations for assessing the role of chirality in the structure of protonated and sodiated di- or tetra-peptides. Sodiated systems show a strong chirality dependence of the competition between Na(+)O and Na(+)π interactions. Chirality effects are more subtle in protonated systems and manifest themselves by differences in the secondary interactions such hydrogen bonds between neutral groups or those involving the aromatic rings.

5.
J Phys Chem A ; 119(46): 11233-40, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26522836

RESUMO

The dynamics of a substituted proton sponge-the 1,8-bis(dimethylamino)-4-cyanonaphthalene (DMAN-CN) molecule-was investigated after excitation in the S1 state. Experimental and theoretical information are reported. The former includes absorption, fluorescence, and time-resolved transient absorption spectra, which were recorded in solution. Real-time dynamics measurements were also performed on gas-phase isolated DMAN-CN. TD DFT/6-31G(d,p) level and CIS/6-31G(d,p) excited-state calculations complement these results. This has allowed revisiting the energy transfer process between a locally excited (LE) and a charge transfer (CT) state, which is often invoked with this kind of molecule.

6.
Phys Chem Chem Phys ; 17(39): 25809-21, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25909479

RESUMO

Chirality effects on the intramolecular interactions strongly depend on the charge and protonation states. Here, the influence of chirality on the structure of the neutral, protonated, and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-1-amino-2-indanol diastereomers, prototypical molecules with two chiral centers, is investigated in a molecular beam by laser spectroscopy coupled with quantum chemical calculations. The neutral systems are structurally characterised by double resonance IR-UV spectroscopy, while IR-induced dissociation spectroscopy is employed for the charged molecules. The sterical constraints due to the cyclic nature of the molecule emphasise the chirality effects, which manifest themselves by the formation of an intramolecular hydrogen bond in neutral or protonated (1R,2S)-cis-amino-indanol. In contrast, this interaction is not possible in (1R,2R)-trans-amino-indanol. In the protonated species, chirality also influences the spectroscopic probes in the NH/OH stretch range by fine-tuning subtle effects such as the hyperconjugation between the σ(OH) orbital and σ* orbitals localised on the alicyclic ring. The radical cation undergoes opening of the alicyclic ring, which results in an ionisation-induced loss of the chirality effects.


Assuntos
Indanos/química , Gases/química , Modelos Moleculares , Conformação Molecular , Prótons , Espectrofotometria Infravermelho , Estereoisomerismo , Raios Ultravioleta
7.
Phys Chem Chem Phys ; 16(40): 22262-72, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25219416

RESUMO

State-of-the-art experimental and theoretical tools were used to investigate the gas-phase relaxation dynamics of various photoexcited photochromic dithienylethene molecules in situations where several relaxation channels are simultaneously at play. Unconstrained and constrained dynamics were addressed by considering unbridged and bridged molecules with a polyether bridge of various sizes (from 2 to 4 units). Time-resolved ultrafast ionization spectroscopy techniques were used to probe the dynamics. This revealed the existence of several relaxation pathways from the first excited state to the ground-state. Characteristic times were determined for each process. These channels compete at an early stage of the dynamics only when the initial wavepacket splits into two parts. A striking excited state wavepacket oscillation is observed in bridged molecules. A general reaction mechanism is proposed which rationalizes the carbon-carbon distance rule which is widely used as an empirical tool to predict the photoactivity of photochromic molecules in crystals.

8.
J Phys Chem Lett ; 5(1): 56-61, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276181

RESUMO

Protonated cinchona alkaloids and their dimers undergo photochemical reaction in the gas phase, leading to UV-specific photofragments, not observed by collision-induced dissociation. Simultaneous coupling of UV and IR lasers with a Paul ion trap has been achieved for obtaining the vibrational spectrum of the fragments arising from the photodissociation. The structure of the photoproduced radical has been fully characterized by comparing the experimental spectrum to that simulated by DFT calculations.

9.
Phys Chem Chem Phys ; 14(6): 1945-56, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22231287

RESUMO

This work deals with the photophysics of a pyridinium betaine, 2-pyridin-1-yl-1H-benzimidazole (SBPa), based on a combination of steady-state, femtosecond photoionization (gas phase) and femtosecond transient absorption (solution) spectroscopic measurements, supported by (LR)-PCM-(TD)DFT calculations. Preliminary and new electrochemical results have revealed a strongly negative solvatochromic charge transfer (CT) absorption due to a S(0) → S(2) vertical transition and a weakly-solvatochromic emission due to S(1) → S(0) transition. Advanced TDDFT optimizations of the Franck-Condon states S(2)(FC) and S(1)(FC) led to two additional CT levels with planar geometry, S(2)(CT) and S(1)(CT), respectively, allowing prediction of a two-step photoinduced ICT process, i.e., S(0) → S(2)(FC) and S(2)(CT) → S(1)(CT), separated by a S(2)(FC) → S(2)(CT) back charge transfer relaxation. While the pyridinium ring is the acceptor group in both steps, two different donor groups, the benzene ring and the imidazole bridge, are involved in the excitation and internal conversion processes, respectively. Femtosecond transient absorption experiments supported by MCR-ALS decomposition confirmed indeed the contribution of two distinct CT states in the photophysics of SBPa: following excitation to the S(2)(CT) state, ultrafast production of the emissive S(1) state (the only channel observable in the gas phase) was observed to occur in competition with a further ICT process toward the S(1)(CT) state, with a time constant ranging from 300 fs to 20 ps depending on the solvent. While in aprotic media this ICT process was found to be purely solvent controlled (double polarity and viscosity dependency), in protic solvents, the influence of the hydrogen bond network has to be taken into account. Comparison with data obtained for a pre-twisted SBPa analogue led us to exclude the presence of any large-amplitude geometrical change during ICT. Analyzing the solvent dependency using the power law approach, we concluded that the S(1)(CT) state decays essentially through IC in the 3-40 ps time range whereas the emissive S(1) state decays within 130-260 ps via IC, ISC and fluorescence.

10.
Phys Chem Chem Phys ; 14(18): 6173-8, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22173743

RESUMO

The photophysics of the B (1)B(1) state of isolated cyclopropenylidene, c-C(3)H(2), has been studied by femtosecond time-resolved photoionisation and photoelectron spectroscopy. The carbene was produced by flash pyrolysis of 3-chlorocycloprop-1-ene. The bands at 266.9 nm and 264.6 nm have been investigated. The excited state deactivates in a two step process. The first time constant of less than 50 fs corresponds most likely to a nonradiative transition to the A-state, the second one on the order of 200 fs describes the internal conversion to the electronic ground state. The data are compared to those measured for the chlorinated carbene c-C(3)HCl. In the photoelectron spectrum of c-C(3)H(2) resonances were observed which can be assigned to members of a Rydberg d-series.

11.
J Phys Chem A ; 115(50): 14249-53, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22047176

RESUMO

The ultrafast dynamics of isolated 9-fluorenone was studied by femtosecond time-resolved photoionization and photoelectron spectroscopy. The molecule was excited around 264-266 nm into the S(6) state. The experimental results indicate that the excitation is followed by a multistep deactivation. A time constant of 50 fs or less corresponds to a fast redistribution of energy within the initially excited manifold of states, i.e., a motion away from the Franck-Condon region. Internal conversion to the S(1) state then proceeds within 0.4 ps. The S(1) state is long-lived, and only a lower bound of 20 ps can be derived. In addition, we computed excited state energies and oscillator strengths by TD-DFT theory, supporting the interpretation of the experimental data.

12.
J Phys Chem A ; 115(34): 9603-11, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21524053

RESUMO

The present paper reports on an integrated spectroscopic study of the anisole-phenol complex in a molecular beam environment. Combining REMPI and HR-LIF spectroscopy experimental data with density functional computations (TD-M05-2X/M05-2X//N07D) and first principle spectra simulations, it was possible to locate the band origin of the S(1) ← S(0) electronic transition and determine the equilibrium structure of the complex, both in the S(0) and S(1) electronic states. Experimental and computational evidence indicates that the observed band origin is due to an electronic transition localized on the phenol frame, while it was not possible to localize experimentally another band origin due to the electronic transition localized on the anisole molecule. The observed structure of the complex is stabilized by a hydrogen bond between the phenol, acting as a proton donor, and the anisole molecule, acting as an acceptor through the lone pairs of the oxygen atom. A secondary interaction involving the hydrogen atoms of the anisole methyl group and the π electron system of the phenol molecule stabilizes the complex in a nonplanar configuration. Additional insights about the landscapes of the potential energy surfaces governing the ground and first excited electronic states of the anisole-phenol complex, with the issuing implications on the system photodynamic, can be extracted from the combined experimental and computational studies.


Assuntos
Anisóis/química , Físico-Química , Fenol/química , Análise Espectral/métodos , Elétrons , Gases/química , Hidrogênio/química , Ligação de Hidrogênio , Modelos Moleculares , Oxigênio/química , Prótons , Termodinâmica
13.
Phys Chem Chem Phys ; 12(41): 13547-54, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20871883

RESUMO

Integrated experimental and computational results help to clarify the nature of the intermolecular interactions in a simple, isolated π-stacked dimer prepared in a molecular beam. The properties of bimolecular anisole complexes are examined and discussed in terms of the local/supramolecular nature of the electronic wavefunctions. Experimental resonance-enhanced multi-photon ionization spectra of clusters with different isotopic compositions confirmed the fundamentally localized nature of the S(1)←S(0) electronic transition. A detail analysis of the experimental results however shows the existence of non-negligible excitonic coupling for the excited-state wavefunctions leading to the doubling of the single-molecule vibronic levels in the S(1) state, with a splitting of about 30 cm(-1). Theoretical simulation of the vibrationally resolved electronic spectra and computations of the excitonic coupling convincingly support the experimental findings. The overall combined experimental/theoretical study allows a detailed description of the stacking interaction in the anisole dimer.

14.
J Phys Chem A ; 113(52): 14554-8, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19827799

RESUMO

We investigated the reaction dynamics of N-methylpyrrole (NMP) along the N-CH3 coordinate, upon excitation energies below 6.4 eV. Ours and previous experiments show clearly the existence of different reaction channels leading to slow and fast fragment production whose relative efficiency fluctuates with the changes in the excitation energy. Thanks to our modeling based on the differences of the NMP molecular orbitals (MOs) with respect to those of pyrrole we are able to show the existence of two low lying dissociative pi sigma(N-CH3)* states. Those states originate from the degeneracy removal in the pi MOs owing to their interaction with the sigma(CH) MO of the methyl group. This evidence and the calculated potential energy surfaces for dissociation along the N-CH3 coordinate provide the correct framework for the interpretation of the details in the NMP photodissociation dynamics.


Assuntos
Elétrons , Processos Fotoquímicos , Pirróis/química , Modelos Moleculares , Conformação Molecular , Teoria Quântica
15.
J Phys Chem A ; 111(49): 12363-71, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17997530

RESUMO

Resonance enhanced multiphoton ionization and rotationally resolved S1<--S0 electronic spectra of the anisole-2H2O complex have been obtained. The experimental results are compared with high level quantum mechanical calculations and with data already available in the literature. Quite surprisingly, the equilibrium structure of the anisole-2H2O complex in the S0 state shows some non-negligible differences from that of the isotopomer anisole-1H2O complex. Actually, the structure of the deuterated complex is more similar to the corresponding structure of the anisole-1H2O complex in the S1 state. In anisole-water, two equivalent H(D) atoms exist as revealed by line splitting in the rotationally resolved spectra. It is possible to suggest a mechanism for the proton/deuteron exchange ruled by a bifurcated transition state for the exchange reaction, with both water hydrogen atoms interacting with the anisole oxygen atom. From the analysis of all of the available experimental data and of computational results, we can demonstrate that in the S1 excited state the hydrogen bond in which the water molecule acts as an acid is weaker than in the electronic ground state but is still the principal interaction between water and the anisole molecules.

16.
J Chem Phys ; 127(14): 144303, 2007 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-17935391

RESUMO

State-of-the-art spectroscopic and theoretical methods have been exploited in a joint effort to elucidate the subtle features of the structure and the energetics of the anisole-ammonia 1:1 complex, a prototype of microsolvation processes. Resonance enhanced multiphoton ionization and laser-induced fluorescence spectra are discussed and compared to high-level first-principles theoretical models, based on density functional, many body second order perturbation, and coupled cluster theories. In the most stable nonplanar structure of the complex, the ammonia interacts with the delocalized pi electron density of the anisole ring: hydrogen bonding and dispersive forces provide a comparable stabilization energy in the ground state, whereas in the excited state the dispersion term is negligible because of electron density transfer from the oxygen to the aromatic ring. Ground and excited state geometrical parameters deduced from experimental data and computed by quantum mechanical methods are in very good agreement and allow us to unambiguously determine the molecular structure of the anisole-ammonia complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...