Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202302111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453650

RESUMO

Phytochemical studies on 95 % ethanol extract of the heartwood of Solanum verbascifolium L. resulted in the isolation of one new amide derivative (1), and 21 known phenylpropanoids compounds. The structures were characterized by spectral analysis and high-resolution mass spectrometric analysis. The anti-inflammatory activity of amide compounds 1-4 and 6-9 by investigating their impact on the release of nitric oxide (NO) in MH-S cells. Our findings unveiled significant inhibitory effects on NO secretion. Compound 1 exhibited robust dose-dependent suppression, with pronounced inhibition observed at both 20 µM (P<0.01) and 40 µM (P<0.01). Furthermore, compound 9 demonstrated noteworthy inhibitory effects at 40 µM (P<0.01). Similarly, compounds 3 and 4 displayed substantial inhibition of NO secretion at the same concentration, although the significance level was slightly lower (P<0.05). It is expected that there is a substantial association between the anti-inflammatory activities of amides and their targets, specifically PTGS2, by combining network pharmacology and molecular docking techniques. This discovery emphasizes amides' potential as an interesting subject for additional study in the realm of anti-inflammatory medications.


Assuntos
Anti-Inflamatórios , Simulação de Acoplamento Molecular , Óxido Nítrico , Solanum , Solanum/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Farmacologia em Rede , Amidas/química , Amidas/farmacologia , Amidas/isolamento & purificação , Camundongos , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação
2.
Chem Biodivers ; 20(11): e202300999, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933979

RESUMO

Dendrobium officinale Kimura et Migo is a valuable and homologous medicine and food traditional Chinese medicine. Currently there are few studies on the anti-inflammatory activity of lipophilic components. The aim of this study was to explore the anti-inflammatory effect and mechanism of the lipophilic compounds in Dendrobium officinale. Six compounds were isolated and identified, including three bibenzyl compounds, dendrocandin U, dendronbibisline B, erianin, and three lignans, (-)-syringaresinol, (+)-syringaresinol-O-ß-D-glucopyranoside, 5-methoxy-(+)-isolariciresinol. Among them, dendronbibisline B and 5-methoxy-(+)-isolariciresinol were isolated from Dendrobium officinale for the first time. Besides, we found dendrocandin U, dendronbibisline B and (-)-syringaresinol exhibited the anti-inflammation to inhibit nitric oxide secretion induced by lipopolysaccharide (LPS)/interferon (IFN-γ) in MH-S cells. Furthermore, dendrocandin U could inhibit the expression of tumor necrosis factor-α (TNF-α), Cluster of Differentiation 86 (CD86), and reduce inflammatory morphological changes of macrophages. Meanwhile, we confirmed that the anti-inflammation mechanism of dendrocandin U was to inhibit M1 polarization by suppressing toll-like receptor 4 (TLR4)/recombinant myeloid differentiation factor 88 (MyD88)/nuclear factor kappa B (NF-κB) signaling pathway. In this paper, dendrocandin U with significant anti-inflammatory activity was found from Dendrobium officinale, which could provide a basis for the study of its anti-inflammatory drugs.


Assuntos
Dendrobium , NF-kappa B , NF-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia
3.
Int Immunopharmacol ; 118: 110124, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028276

RESUMO

BACKGROUND: Sepsis is a systemic inflammatory response, and vascular leakage associated with acute lung injury (ALI) is an important pathophysiological process during sepsis. Schisandrin A (SchA) is a bioactive lignan which has been reported to have the anti-inflammatory effects in many studies, while whether SchA can ameliorate ALI-related vascular leakage caused by sepsis is unknown. OBJECTIVE: To evaluate the role and the underlying mechanism of SchA in increase of pulmonary vascular permeability induced by sepsis. METHODS: The effect of SchA on pulmonary vascular permeability was examined in rat acute lung injury model. The effect of SchA on skin vascular permeability of mice was investigated through Miles assay. MTT assay was performed to detect the cell activity, and transwell assay was used to detect the effect of SchA on cell permeability. The effects of SchA on junction proteins and RhoA/ROCK1/MLC signaling pathway were manifested by immunofluorescence staining and western blot. RESULTS: The administration of SchA alleviated rat pulmonary endothelial dysfunction, relieved increased permeability in the mouse skin and HUVECs induced by lipopolysaccharide (LPS). Meanwhile, SchA inhibited the formation of stress fibers, reversed the decrease of expression of ZO-1 and VE-cadherin. Subsequent experiments confirmed that SchA inhibited RhoA/ROCK1/MLC canonical pathway in rat lungs and HUVECs induced by LPS. Moreover, overexpression of RhoA reversed the inhibitory effect of SchA in HUVECs, which suggested that SchA protected the pulmonary endothelial barrier by inhibiting RhoA/ROCK1/MLC pathway. CONCLUSION: In summary, our results indicate that SchA ameliorates the increase of pulmonary endothelial permeability induced by sepsis through inhibition of RhoA/ROCK1/MLC pathway, providing a potentially effective therapeutic strategy for sepsis.


Assuntos
Lesão Pulmonar Aguda , Lignanas , Sepse , Camundongos , Ratos , Animais , Permeabilidade Capilar , Lipopolissacarídeos/farmacologia , Pulmão , Quinases Associadas a rho/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Sepse/tratamento farmacológico , Sepse/metabolismo , Permeabilidade
4.
Int J Mol Med ; 42(2): 1018-1025, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29717773

RESUMO

Cucurbitacin B (CuB), the active component of a traditional Chinese herbal medicine, Pedicellus Melo, has been shown to exhibit antitumor and anti-inflammation effects, but its role in tumor angiogenesis, the key step involved in tumor growth and metastasis, and the involved molecular mechanism are unknown. Tumor angiogenesis is one of the hallmarks of the development in malignant neoplasias and metastasis. Effective targeting of tumor angiogenesis is a key area of interest for cancer therapy. Here, we demonstrated that CuB significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration, tubulogenesis in vitro, and blocked angiogenesis in chick embryo chorioallantoic membrane (CAM) assay in vivo. Furthermore, CuB induced HUVEC apoptosis and may induce apoptosis by triggering the mitochondrial apoptotic pathway. Finally, we found that CuB inhibiting angiogenesis was associated with inhibition of the activity of vascular endothelial growth factor receptor 2 (VEGFR2). Our investigations suggested that CuB was a potential drug candidate for angiogenesis related diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Embrião de Galinha , Células Endoteliais/metabolismo , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Med Sci ; 10(9): 1242-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935402

RESUMO

Aconitine is a well-known arrhythmogenic toxin and induces triggered activities through cardiac voltage-gated Na(+) channels. However, the effects of aconitine on intracellular Ca(2+) signals were previously unknown. We investigated the effects of aconitine on intracellular Ca(2+) signals in rat ventricular myocytes and explored the possible mechanism of arrhythmogenic toxicity induced by aconitine. Ca(2+) signals were evaluated by measuring L-type Ca(2+) currents, caffeine-induced Ca(2+) release and the expression of NCX and SERCA2a. Action potential and triggered activities were recorded by whole-cell patch-clamp techniques. In rat ventricular myocytes, the action potential duration was significantly prolonged by 1 µM aconitine. At higher concentrations (5 µM and 10 µM), aconitine induced triggered activities and delayed after-depolarizations (6 of 8 cases), which were inhibited by verapamil. Aconitine (1 µM) significantly increased the ICa-L density from 12.77 ± 3.12 pA/pF to 18.98 ± 3.89 pA/pF (n=10, p<0.01). The activation curve was shifted towards more negative potential, while the inactivation curve was shifted towards more positive potential by 1 µM aconitine. The level of Ca(2+) release induced by 10 mM caffeine was markedly increased. Aconitine (1 µM) increased the expression of NCX, while SERCA2a expression was reduced. In conclusion, aconitine increased the cytosolic [Ca(2+)]i by accelerating ICa-L and changing the expression of NCX and SERCA2a. Then, the elevation of cytosolic [Ca(2+)]i induced triggered activities and delayed after-depolarizations. Arrhythmogenesis toxicity of aconitine is related to intracellular Ca(2+) signals.


Assuntos
Aconitina/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Western Blotting , Cafeína/farmacologia , Células Cultivadas , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...