Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687237

RESUMO

This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).


Assuntos
Oryza , Amido Resistente , Amido , Oryza/genética , Pós , Farinha , Água
2.
Breed Sci ; 70(3): 409-414, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714065

RESUMO

Resistant starch (RS) is beneficial for human health, and especially for diabetics. Considering the high cost and low productivity of the Jiangtangdao 1 rice variety with high RS content, breeding high RS rice varieties exhibiting high productivity is essential. A molecular marker-assisted selection strategy was applied to increase RS content in a three-line hybrid rice variety. The functional rice variety Jiangtangdao 1, which contains sbe3-rs (on chr2) that controls the RS content, was used as the high RS content donor parent. Subsequently, male sterile maintainer and restorer lines containing homozygous sbe3-rs were bred using molecular marker-assisted selection combined with traditional breeding methods. The male sterile line was crossed with the restorer lines to identify the optimal hybrid combination with a high RS content. We obtained four combinations for which the yields were >50% higher than those of the control Jiangtangdao 1. In addition, there was no significant difference in the RS content between the combinations and Jiangtangdao 1. The hybrid rice plants with high RS content exhibited favorable agronomic traits and therefore have broad prospects for commercial application.

3.
Sci Rep ; 10(1): 8518, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444695

RESUMO

Low temperature affects a broad spectrum of cellular components in plants, such as chloroplasts, as well as plant metabolism. On the other hand, pseudouridine (Ψ) synthases are required for the most abundant post-transcriptional modification of RNA in Escherichia coli. However, the role of rice Ψ synthases in regulating chloroplast development at low temperature remains elusive. In this study, we identified the rice thermo-sensitive chlorophyll-deficient (tcd3) mutant, which displays an albino phenotype before the 4-leaf stage and ultimately dies when grown at 20 °C, but can grow normally at 32 °C. Genetic analysis showed that the mutant trait is controlled by a single recessive nuclear gene (tcd3). Map-based cloning, complementation and knockout tests revealed that TCD3 encodes a chloroplast-localized Ψ synthase. TCD3 is a cold-induced gene that is mainly expressed in leaves. The disruption of TCD3 severely affected the transcript levels of various chloroplast-associated genes, as well as ribosomal genes involved in chloroplast rRNA assembly at low temperature (20 °C), whereas the transcript levels of these genes were normal at high temperature (32 °C). These results provide a first glimpse into the importance of rice Ψ synthase gene in chloroplast development at low temperatures.


Assuntos
Clorofila/deficiência , Cloroplastos/fisiologia , Temperatura Baixa , Transferases Intramoleculares/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Oryza/enzimologia , Oryza/genética , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Homologia de Sequência
4.
Planta ; 247(3): 693-703, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170911

RESUMO

MAIN CONCLUSION: The acetohydroxy acid synthase S627N mutation confers herbicide tolerance in rice, and the rice variety containing this mutation produces good yields. This variety is commercially viable at Shanghai and Jiangsu regions in China. Weedy rice is a type of rice that produces lower yields and poorer quality grains than cultivated rice. It plagues commercial rice fields in many countries. One strategy to control its proliferation is to develop rice varieties that are tolerant to specific herbicides. Acetohydroxy acid synthase (AHAS) mutations have been found to confer herbicide tolerance to rice. Here, we identified a single mutation (S627N) in AHAS from an indica rice variety that conferred tolerance against imidazolinone herbicides, including imazethapyr and imazamox. A japonica rice variety (JD164) was developed to obtain herbicide tolerance by introducing the mutated indica ahas gene. Imidazolinone application was sufficient to efficiently control weedy rice in the JD164 field. Although the imazethapyr treatment caused dwarfing in the JD164 plants, it did not significantly reduce yields. To determine whether the decrease of the ahas mRNA expression caused the dwarfism of JD164 after imazethapyr application, we detected the ahas mRNA level in plants. The abundance of the ahas mRNA in JD164 increased after imidazolinone application, thus excluding the mRNA expression level as a possible cause of dwarfism. Activity assays showed that the mutated AHAS was tolerant to imidazolinone but the catalytic efficiency of the mutated AHAS decreased in its presence. Moreover, the activity of the mutated AHAS decreased more in the presence of imazethapyr than in the presence of imazamox. We observed no difference in the AHAS secondary structures, but homology modeling suggested that the S627N mutation enabled the substrate to access the active site channel in AHAS, resulting in imidazolinone tolerance. Our work combined herbicides with a rice variety to control weedy rice and showed the mechanism of herbicide tolerance in this rice variety.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Imidazolinas/farmacologia , Oryza/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Acetolactato Sintase/metabolismo , China , Produção Agrícola , Oryza/enzimologia
5.
Breed Sci ; 66(4): 481-489, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795673

RESUMO

Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.

6.
Nat Genet ; 47(7): 834-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26053497

RESUMO

Asian cultivated rice (Oryza sativa L.) consists of two main subspecies, indica and japonica. Indica has higher nitrate-absorption activity than japonica, but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B (OsNPF6.5), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica. NRT1.1B-indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B-indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B-indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B-indica can potentially improve the NUE of japonica.


Assuntos
Proteínas de Transporte de Ânions/genética , Oryza/genética , Proteínas de Plantas/genética , Alelos , Animais , Proteínas de Transporte de Ânions/metabolismo , Sequência de Bases , Células Cultivadas , Especiação Genética , Variação Genética , Transportadores de Nitrato , Nitratos/metabolismo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Xenopus laevis
7.
PLoS One ; 7(8): e43026, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937009

RESUMO

Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Genes de Plantas/genética , Oryza/enzimologia , Oryza/genética , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Mutação
8.
Theor Appl Genet ; 122(5): 855-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21107519

RESUMO

Most existing statistical methods for mapping quantitative trait loci (QTL) are not suitable for analyzing survival traits with a skewed distribution and censoring mechanism. As a result, researchers incorporate parametric and semi-parametric models of survival analysis into the framework of the interval mapping for QTL controlling survival traits. In survival analysis, accelerated failure time (AFT) model is considered as a de facto standard and fundamental model for data analysis. Based on AFT model, we propose a parametric approach for mapping survival traits using the EM algorithm to obtain the maximum likelihood estimates of the parameters. Also, with Bayesian information criterion (BIC) as a model selection criterion, an optimal mapping model is constructed by choosing specific error distributions with maximum likelihood and parsimonious parameters. Two real datasets were analyzed by our proposed method for illustration. The results show that among the five commonly used survival distributions, Weibull distribution is the optimal survival function for mapping of heading time in rice, while Log-logistic distribution is the optimal one for hyperoxic acute lung injury.


Assuntos
Mapeamento Cromossômico , Modelos Genéticos , Modelos Estatísticos , Locos de Características Quantitativas , Lesão Pulmonar Aguda/genética , Algoritmos , Animais , Teorema de Bayes , Feminino , Funções Verossimilhança , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oryza/genética , Fenótipo , Análise de Sobrevida
9.
Mol Cells ; 29(2): 167-74, 2010 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-20016946

RESUMO

In addition to its role as an energy source for plants, animals and humans, starch is also an environmentally friendly alternative to fossil fuels. In rice, the eating and cooking quality of the grain is determined by its starch properties. The floury endosperm of rice has been explored as an agronomical trait in breeding and genetics studies. In the present study, we characterized a floury endosperm mutant, flo(a), derived from treatment of Oryza sativa ssp. japonica cultivar Hwacheong with MNU. The innermost endosperm of the flo(a) mutant exhibited floury characteristics while the outer layer of the endosperm appeared normal. Starch granules in the flo(a) mutant formed a loosely-packed crystalline structure and X-ray diffraction revealed that the overall crystallinity of the starch was decreased compared to wild-type. The FLO(a) gene was isolated via a map-based cloning approach and predicted to encode the tetratricopeptide repeat domain-containing protein, OsTPR. Three mutant alleles contain a nucleotide substitution that generated one stop codon or one splice site, respectively, which presumably disrupts the interaction of the functionally conserved TPR motifs. Taken together, our map-based cloning approach pinpointed an OsTPR as a strong candidate of FLO(a), and the proteins that contain TPR motifs might play a significant role in rice starch biosynthetic pathways.


Assuntos
Endosperma/genética , Farinha , Genes de Plantas/genética , Oryza/genética , Mapeamento Físico do Cromossomo , Sequência de Bases , Segregação de Cromossomos , Clonagem Molecular , Endosperma/ultraestrutura , Marcadores Genéticos , Dados de Sequência Molecular , Mutação , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual/genética , Polimorfismo Genético , Estrutura Terciária de Proteína , Difração de Raios X
10.
Theor Appl Genet ; 118(3): 609-17, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19020853

RESUMO

In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics-chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author.


Assuntos
Mapeamento Cromossômico/métodos , Modelos Genéticos , Oryza/genética , Locos de Características Quantitativas , Teorema de Bayes , Simulação por Computador , Oryza/fisiologia , Fenótipo
11.
Mol Cells ; 23(1): 72-9, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17464214

RESUMO

Demand for low-input sustainable crop cultivation is increasing to meet the need for environment-friendly agriculture. Consequently, developing genotypes with high nutrient use efficiency is one of the major objectives of crop breeding programs. This study was conducted to identify QTLs for traits associated with physiological nitrogen use efficiency (PNUE). A recombinant inbred population (DT-RILs) between Dasanbyeo (a tongil type rice, derived from an indica x japonica cross and similar to indica in its genetic make-up) and TR22183 (a Chinese japonica variety) consisting of 166 F8 lines was developed and used for mapping. A frame map of 1,409 cM containing 113 SSR and 103 STS markers with an average interval of 6.5 cM between adjacent marker loci was constructed using the DT-RILs. The RILs were cultivated in ordinary-N (N-P2O5-K2O = 100-80-80 kg/ha) and low-N (N-P2O5-K2O= 50-80-80 kg/ha) (100 kg/ha) conditions. PNUE was positively correlated with the harvest index and grain yield in both conditions. Twenty single QTLs (S-QTLs) and 58 pairs of epistatic loci (E-QTLs) were identified for the nitrogen concentration of grain, nitrogen concentration of straw, nitrogen content of shoot, harvest index, grain yield, straw yield and PNUE in both conditions. The phenotypic variance explained by these S-QTLs and E-QTLs ranged from 11.1 to 44.3% and from 16.0% to 63.6% , respectively. The total phenotypic variance explained by all the QTLs for each trait ranged from 35.8% to 71.3%, showing that the expression of PNUE and related characters depends significantly upon genetic factors. Both S-QTLs and E-QTLs may be useful for marker-assisted selection (MAS) to develop higher PNUE genotypes.


Assuntos
Nitrogênio/metabolismo , Oryza/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Epistasia Genética , Fertilizantes , Marcadores Genéticos , Endogamia , Polimorfismo Genético , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...