Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34355435

RESUMO

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

2.
Phys Chem Chem Phys ; 22(43): 24895-24906, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33025984

RESUMO

The atomic scale structure of amorphous AsTe3 is investigated through X-ray diffraction, first-principles molecular dynamics (FPMD), and machine learning interatomic potentials (ML-GAP) obtained by exploiting the ab initio data. We obtain good agreement between the measured and modelled diffraction patterns. Our FPMD results show that As and Te obey the 8-N rule with average coordination numbers of 3 and 2, respectively. We find that small fractions of under and over coordinated As and Te atoms are present in the amorphous phase with about 6% (FPMD), and 13% (ML-GAP) of 3-fold Te. As is found at the center of pyramidal structures predominantly linked through Ten chains rather than rings. Despite the low As concentration in AsTe3, its local environment features a very high chemical disorder that manifests through the occurrence of homopolar bonds including at least 57% of As atoms.

3.
Nanomaterials (Basel) ; 8(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326574

RESUMO

Platinum is the most employed electrocatalyst for the reactions taking place in energy converters, such as the oxygen reduction reaction in proton exchange membrane fuel cells, despite being a very low abundant element in the earth's crust and thus extremely expensive. The search for more active electrocatalysts with ultra-low Pt loading is thus a very active field of investigation. Here, surface-limited redox replacement (SLRR) that utilizes the monolayer-limited nature of underpotential deposition (UPD) was used to prepare ultrathin deposits of Pt, using Te as sacrificial metal. Cyclic voltammetry and anodic potentiodynamic scanning experiments have been performed to determine the optimal deposition conditions. Physicochemical and electrochemical characterization of the deposited Pt was carried out. The deposit comprises a series of contiguous Pt islands that form along the grain interfaces of the Au substrate. The electrochemical surface area (ECSA) of the Pt deposit obtained after 5 replacements, estimated to be 18 m²/g, is in agreement with the ECSA of extended surface catalysts on flat surfaces.

4.
R Soc Open Sci ; 5(1): 171401, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29410843

RESUMO

The transition from a semiconductor to a fast-ion conductor with increasing silver content along the Ag x (Ge0.25Se0.75)(100-x) tie line (0≤x≤25) was investigated on multiple length scales by employing a combination of electric force microscopy, X-ray diffraction, and neutron diffraction. The microscopy results show separation into silver-rich and silver-poor phases, where the Ag-rich phase percolates at the onset of fast-ion conductivity. The method of neutron diffraction with Ag isotope substitution was applied to the x=5 and x=25 compositions, and the results indicate an evolution in structure of the Ag-rich phase with change of composition. The Ag-Se nearest-neighbours are distributed about a distance of 2.64(1) Å, and the Ag-Se coordination number increases from 2.6(3) at x=5 to 3.3(2) at x=25. For x=25, the measured Ag-Ag partial pair-distribution function gives 1.9(2) Ag-Ag nearest-neighbours at a distance of 3.02(2) Å. The results show breakage of Se-Se homopolar bonds as silver is added to the Ge0.25Se0.75 base glass, and the limit of glass-formation at x≃28 coincides with an elimination of these bonds. A model is proposed for tracking the breakage of Se-Se homopolar bonds as silver is added to the base glass.

5.
Inorg Chem ; 57(2): 754-767, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29266938

RESUMO

Recrystallization of amorphous compounds can lead to the stabilization of metastable crystalline phases, which offers an interesting way to unveil novel binary or ternary compounds and control the transport properties of the obtained glass ceramics. Here, we report on a systematic study of the Cu-As-Te glassy system and show that under specific synthesis conditions using the spark-plasma-sintering technique, the α-As2Te3 and ß-As2Te3 binary phases and the previously unreported AsTe3 phase can be selectively crystallized within an amorphous matrix. The microstructures and transport properties of three different glass ceramics, each of them containing one of these phases with roughly the same crystalline fraction (∼30% in volume), were investigated in detail by means of X-ray diffraction, scanning electron microscopy, neutron thermodiffraction, Raman scattering (experimental and lattice-dynamics calculations), and transport-property measurements. The physical properties of the glass ceramics are compared with those of both the parent glasses and the pure crystalline phases that could be successfully synthesized. SEM images coupled with Raman spectroscopy evidence a "coast-to-island" or dendriticlike microstructure with microsized crystallites. The presence of the crystallized phase results in a significant decrease in the electrical resistivity while maintaining the thermal conductivity to low values. This study demonstrates that new compounds with interesting transport properties can be obtained by recrystallization, which in turn provides a tuning parameter for the transport properties of the parent glasses.

6.
Inorg Chem ; 56(4): 2248-2257, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28177618

RESUMO

We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As2Te3-xSex (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As2Te3-xSex crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As2Te3. The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As2Te3 exhibits very low lattice thermal conductivity κL, the substitution of Se for Te further lowers κL to 0.35 W m-1 K-1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.

7.
Inorg Chem ; 54(20): 9936-47, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26418840

RESUMO

Metastable ß-As2Te3 (R3̅m, a = 4.047 Å and c = 29.492 Å at 300 K) is isostructural to layered Bi2Te3 and is known for similarly displaying good thermoelectric properties around 400 K. Crystallizing glassy-As2Te3 leads to multiphase samples, while ß-As2Te3 could indeed be synthesized with good phase purity (97%) by melt quenching. As expected, ß-As2Te3 reconstructively transforms into stable α-As2Te3 (C2/m, a = 14.337 Å, b = 4.015 Å, c = 9.887 Å, and ß = 95.06°) at 480 K. This ß â†’ α transformation can be seen as the displacement of part of the As atoms from their As2Te3 layers into the van der Waals bonding interspace. Upon cooling, ß-As2Te3 displacively transforms in two steps below T(S1) = 205-210 K and T(S2) = 193-197 K into a new ß'-As2Te3 allotrope. These reversible and first-order phase transitions give rise to anomalies in the resistance and in the calorimetry measurements. The new monoclinic ß'-As2Te3 crystal structure (P2(1)/m, a = 6.982 Å, b = 16.187 Å, c = 10.232 Å, ß = 103.46° at 20 K) was solved from Rietveld refinements of X-ray and neutron powder patterns collected at low temperatures. These analyses showed that the distortion undergone by ß-As2Te3 is accompanied by a 4-fold modulation along its b axis. In agreement with our experimental results, electronic structure calculations indicate that all three structures are semiconducting with the α-phase being the most stable one and the ß'-phase being more stable than the ß-phase. These calculations also confirm the occurrence of a van der Waals interspace between covalently bonded As2Te3 layers in all three structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...