Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38047516

RESUMO

Recent experiments related to a study concerning the adsorption of water on graphene have demonstrated the p-doping of graphene, although most of the ab initio calculations predict nearly zero doping. To shed more light on this problem, we have carried out van der Waals density functional theory calculations of water on graphene for both individual water molecules and continuous water layers with coverage ranging from one to eight monolayers. Furthermore, we have paid attention to the influence of the water molecule orientation toward graphene on its doping properties. In this article, we present the results of the band structure and the Bader charge analysis, showing the p-doping of graphene can be synergistically enhanced by putting 4-8 layers of an ice-like water structure on graphene having the water molecules oriented with oxygen atoms toward graphene.

2.
J Phys Condens Matter ; 33(2): 025002, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32906101

RESUMO

Motivated by experimental results on transport properties of graphene covered by gallium atoms, the density functional theory study of clustering of gallium atoms on graphene (up to a size of 8 atoms) is presented. The paper explains a rapid initial increase of graphene electron doping by individual Ga atoms with Ga coverage, which is continually reduced to zero, when bigger multiple-atom clusters have been formed. According to density functional theory calculations with and without the van der Waals correction, gallium atoms start to form a three-dimensional cluster from five and three atoms, respectively. The results also explain an easy diffusion of Ga atoms while forming clusters caused by a small diffusion barrier of 0.11 eV. Moreover, the calculations show this barrier can be additionally reduced by the application of an external electric field, which was simulated by the ionization of graphene. This effect offers a unique possibility to control the cluster size in experiments only by applying a gate-voltage to the graphene in a field-effect transistor geometry and thereby without growth temperature assistance.

3.
Nanotechnology ; 28(41): 415203, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28813368

RESUMO

In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...