Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis ; 21(11): 8, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34636844

RESUMO

Convolutional neural networks have become the state-of-the-art method for image classification in the last 10 years. Despite the fact that they achieve superhuman classification accuracy on many popular datasets, they often perform much worse on more abstract image classification tasks. We will show that these difficult tasks are linked to relational concepts from cognitive psychology and that despite progress over the last few years, such relational reasoning tasks still remain difficult for current neural network architectures. We will review deep learning research that is linked to relational concept learning, even if it was not originally presented from this angle. Reviewing the current literature, we will argue that some form of attention will be an important component of future systems to solve relational tasks. In addition, we will point out the shortcomings of currently used datasets, and we will recommend steps to make future datasets more relevant for testing systems on relational reasoning.


Assuntos
Aprendizado Profundo , Atenção , Humanos , Redes Neurais de Computação
2.
Front Robot AI ; 7: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501210

RESUMO

We consider the problem of autonomous acquisition of manipulation skills where problem-solving strategies are initially available only for a narrow range of situations. We propose to extend the range of solvable situations by autonomous play with the object. By applying previously-trained skills and behaviors, the robot learns how to prepare situations for which a successful strategy is already known. The information gathered during autonomous play is additionally used to train an environment model. This model is exploited for active learning and the generation of novel preparatory behaviors compositions. We apply our approach to a wide range of different manipulation tasks, e.g., book grasping, grasping of objects of different sizes by selecting different grasping strategies, placement on shelves, and tower disassembly. We show that the composite behavior generation mechanism enables the robot to solve previously-unsolvable tasks, e.g., tower disassembly. We use success statistics gained during real-world experiments to simulate the convergence behavior of our system. Simulation experiments show that the learning speed can be improved by around 30% by using active learning.

3.
Front Neurorobot ; 12: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615888

RESUMO

Designed to work safely alongside humans, collaborative robots need to be capable partners in human-robot teams. Besides having key capabilities like detecting gestures, recognizing objects, grasping them, and handing them over, these robots need to seamlessly adapt their behavior for efficient human-robot collaboration. In this context we present the fast, supervised Proactive Incremental Learning (PIL) framework for learning associations between human hand gestures and the intended robotic manipulation actions. With the proactive aspect, the robot is competent to predict the human's intent and perform an action without waiting for an instruction. The incremental aspect enables the robot to learn associations on the fly while performing a task. It is a probabilistic, statistically-driven approach. As a proof of concept, we focus on a table assembly task where the robot assists its human partner. We investigate how the accuracy of gesture detection affects the number of interactions required to complete the task. We also conducted a human-robot interaction study with non-roboticist users comparing a proactive with a reactive robot that waits for instructions.

4.
Front Comput Neurosci ; 9: 104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321941

RESUMO

This paper investigates how utilizing diversity priors can discover early visual features that resemble their biological counterparts. The study is mainly motivated by the sparsity and selectivity of activations of visual neurons in area V1. Most previous work on computational modeling emphasizes selectivity or sparsity independently. However, we argue that selectivity and sparsity are just two epiphenomena of the diversity of receptive fields, which has been rarely exploited in learning. In this paper, to verify our hypothesis, restricted Boltzmann machines (RBMs) are employed to learn early visual features by modeling the statistics of natural images. Considering RBMs as neural networks, the receptive fields of neurons are formed by the inter-weights between hidden and visible nodes. Due to the conditional independence in RBMs, there is no mechanism to coordinate the activations of individual neurons or the whole population. A diversity prior is introduced in this paper for training RBMs. We find that the diversity prior indeed can assure simultaneously sparsity and selectivity of neuron activations. The learned receptive fields yield a high degree of biological similarity in comparison to physiological data. Also, corresponding visual features display a good generative capability in image reconstruction.

5.
PLoS One ; 9(7): e98424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057813

RESUMO

We propose a computational model of a simple cell with push-pull inhibition, a property that is observed in many real simple cells. It is based on an existing model called Combination of Receptive Fields or CORF for brevity. A CORF model uses as afferent inputs the responses of model LGN cells with appropriately aligned center-surround receptive fields, and combines their output with a weighted geometric mean. The output of the proposed model simple cell with push-pull inhibition, which we call push-pull CORF, is computed as the response of a CORF model cell that is selective for a stimulus with preferred orientation and preferred contrast minus a fraction of the response of a CORF model cell that responds to the same stimulus but of opposite contrast. We demonstrate that the proposed push-pull CORF model improves signal-to-noise ratio (SNR) and achieves further properties that are observed in real simple cells, namely separability of spatial frequency and orientation as well as contrast-dependent changes in spatial frequency tuning. We also demonstrate the effectiveness of the proposed push-pull CORF model in contour detection, which is believed to be the primary biological role of simple cells. We use the RuG (40 images) and Berkeley (500 images) benchmark data sets of images with natural scenes and show that the proposed model outperforms, with very high statistical significance, the basic CORF model without inhibition, Gabor-based models with isotropic surround inhibition, and the Canny edge detector. The push-pull CORF model that we propose is a contribution to a better understanding of how visual information is processed in the brain as it provides the ability to reproduce a wider range of properties exhibited by real simple cells. As a result of push-pull inhibition a CORF model exhibits an improved SNR, which is the reason for a more effective contour detection.


Assuntos
Sensibilidades de Contraste/fisiologia , Modelos Neurológicos , Inibição Neural/fisiologia , Neurônios , Animais , Biologia Computacional/métodos , Simulação por Computador , Potenciais Evocados Visuais , Humanos , Neurônios/citologia , Neurônios/fisiologia , Orientação/fisiologia , Razão Sinal-Ruído , Processamento Espacial/fisiologia , Vias Visuais/fisiologia
6.
IEEE Trans Pattern Anal Mach Intell ; 35(8): 1847-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23787340

RESUMO

Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.


Assuntos
Inteligência Artificial , Visão Ocular/fisiologia , Córtex Visual/fisiologia , Animais , Humanos , Reconhecimento Visual de Modelos/fisiologia , Primatas
7.
IEEE Trans Pattern Anal Mach Intell ; 31(10): 1790-803, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19696450

RESUMO

We present an object representation framework that encodes probabilistic spatial relations between 3D features and organizes these features in a hierarchy. Features at the bottom of the hierarchy are bound to local 3D descriptors. Higher level features recursively encode probabilistic spatial configurations of more elementary features. The hierarchy is implemented in a Markov network. Detection is carried out by a belief propagation algorithm, which infers the pose of high-level features from local evidence and reinforces local evidence from globally consistent knowledge, effectively producing a likelihood for the pose of the object in the detection scene. We also present a simple learning algorithm that autonomously builds hierarchies from local object descriptors. We explain how to use our framework to estimate the pose of a known object in an unknown scene. Experiments demonstrate the robustness of hierarchies to input noise, viewpoint changes, and occlusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA