Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 10205, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25988972

RESUMO

NANOG is a key pluripotency factor in embryonic stem cells that is frequently expressed in squamous cell carcinomas (SCCs). However, a direct link between NANOG and SCCs remains to be established. Here, we show that inducible overexpression of NANOG in mouse skin epithelia favours the malignant conversion of skin papillomas induced by chemical carcinogenesis, leading to increased SCC formation. Gene expression analyses in pre-malignant skin indicate that NANOG induces genes associated to epithelial-mesenchymal transition (EMT). Some of these genes are directly activated by NANOG, including EMT-associated genes Zeb1, Zeb2, Twist1, Prrx1 and miR-21. Finally, endogenous NANOG binds to the promoters of theses genes in human SCC cells and, moreover, NANOG induces EMT features in primary keratinocytes. These results provide in vivo evidence for the oncogenic role of NANOG in squamous cell carcinomas.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Papiloma/genética , Neoplasias Cutâneas/genética , Animais , Sequência de Bases , Linhagem Celular Transformada , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/patologia , Papiloma/patologia , Regiões Promotoras Genéticas/genética , Análise de Sequência de RNA , Pele/metabolismo , Neoplasias Cutâneas/patologia
2.
Nat Commun ; 5: 4226, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24979572

RESUMO

NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.


Assuntos
Epitélio/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Epitélio/enzimologia , Esôfago/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , Especificidade da Espécie
3.
Cell Cycle ; 10(9): 1488-98, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21490431

RESUMO

Nanog levels in pluripotent stem cells are heterogeneous and this is thought to reflect two different and interchangeable cell states, respectively poised to self-renew (Nanog-high subpopulation) or to differentiate (Nanog-low subpopulation). However, little is known about the mechanisms responsible for this pattern of Nanog expression. Here, we have examined the impact of the histone methyltransferase Ezh2 on pluripotent stem cells and on Nanog expression. Interestingly, induced pluripotent stem (iPS) cells lacking Ezh2 presented higher levels of Nanog due to a relative expansion of the Nanog-high subpopulation, and this was associated to severe defects in differentiation. Moreover, we found that the Nanog promoter in embryonic stem (ES) cells and iPS cells coexists in two alternative univalent chromatin configurations, either H3K4me3 or H3K27me3, the latter being dependent on the presence of functional Ezh2. Finally, the levels of expression of Ezh2, as well as the amount of H3K27me3 present at the Nanog promoter, were higher in the Nanog-low subpopulation of ES/iPS cells. Together, these data indicate that Ezh2 directly regulates the epigenetic status of the Nanog promoter affecting the balance of Nanog expression in pluripotent stem cells and, therefore, the equilibrium between self-renewal and differentiation.


Assuntos
Epigênese Genética/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteínas de Homeodomínio/biossíntese , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste , Feto/citologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteína Homeobox Nanog , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 2 , Teratoma
4.
Proc Natl Acad Sci U S A ; 107(31): 13736-41, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20631301

RESUMO

The longevity-promoting NAD+-dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sirtuína 1/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linhagem Celular , Guanilato Ciclase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Estabilidade de RNA , Sirtuína 1/deficiência , Sirtuína 1/genética
5.
J Cell Biol ; 187(3): 335-42, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19948477

RESUMO

The activity of Raf-1 and Rok-alpha kinases is regulated by intramolecular binding of the regulatory region to the kinase domain. Autoinhibition is relieved upon binding to the small guanosine triphosphatases Ras and Rho. Downstream of Ras, Raf-1 promotes migration and tumorigenesis by antagonizing Rok-alpha, but the underlying mechanism is unknown. In this study, we show that Rok-alpha inhibition by Raf-1 relies on an intermolecular interaction between the Rok-alpha kinase domain and the cysteine-rich Raf-1 regulatory domain (Raf-1reg), which is similar to Rok-alpha's own autoinhibitory region. Thus, Raf-1 mediates Rok-alpha inhibition in trans, which is a new concept in kinase regulation. This mechanism is physiologically relevant because Raf-1reg is sufficient to rescue all Rok-alpha-dependent defects of Raf-1-deficient cells. Downstream of Ras and Rho, the Raf-1-Rok-alpha interaction represents a novel paradigm of pathway cross talk that contributes to tumorigenesis and cell motility.


Assuntos
Proteínas Proto-Oncogênicas c-raf/fisiologia , Quinases Associadas a rho/metabolismo , Animais , Movimento Celular , Células Cultivadas , Ativação Enzimática , Retroalimentação Fisiológica , Camundongos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
6.
Mol Cell ; 27(6): 962-75, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17889669

RESUMO

RASSF1A is a tumor suppressor gene that is epigenetically silenced in a wide variety of sporadic human malignancies. Expression of alternative RASSF1 isoforms cannot substitute for RASSF1A-promoted cell-cycle arrest and apoptosis. Apoptosis can be driven by either activating Bax or by activation of MST kinases. The Raf1 proto-oncogene binds to MST2, preventing its activation and proapoptotic signaling. Here we show that key steps in RASSF1A-induced apoptosis are the disruption of the inhibitory Raf1-MST2 complex by RASSF1A and the concomitant enhancement of MST2 interaction with its substrate, LATS1. Subsequently, RASSF1A-activated LATS1 phosphorylates and releases the transcriptional regulator YAP1, allowing YAP1 to translocate to the nucleus and associate with p73, resulting in transcription of the proapoptotic target gene puma. Our results describe an MST2-dependent effector pathway for RASSF1A proapoptotic signaling and indicate that silencing of RASSF1A in tumors removes a proapoptotic signal emanating from p73.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Fatores de Transcrição , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
7.
Cell Cycle ; 5(14): 1514-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16861903

RESUMO

The Raf/MEK/ERK cascade is a highly conserved signal transduction module whose activation reportedly results in a plethora of physiological outcomes. Depending on the cell type or the stimulus used, the pathway has been implicated in proliferation, differentiation, survival, and migration. Their wide range of activities renders the component of the Raf/MEK/ERK pathway prime candidates for molecule-targeted therapies, in particular, but not exclusively, in the context of cancer. Ras, Raf and MEK inhibitors have been developed, and some of them are in advanced clinical trials. Somewhat surprising in view of all this interest, our understanding of the fundamental biology of the ERK pathway in vivo is still scanty. Its investigation has been hampered by the fact that conventional targeting of many of these genes results in embryonic lethality. Recently, we and others have generated mouse strains that allow the conditional ablation of the genes coding for Raf-1, B-Raf and MEK-1. We are using these tools to identify the essential biological functions of these kinases, and to understand how the ERK pathway is wired in vivo. Here, we discuss some of the surprises yielded by the analysis of the role of B-Raf and Raf-1 and of their downstream effectors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Animais , MAP Quinase Quinase 1/fisiologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas B-raf/fisiologia , Transdução de Sinais/fisiologia , Quinases raf/fisiologia
8.
Blood ; 108(1): 152-9, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16527894

RESUMO

Normal erythropoiesis critically depends on the balance between the renewal of precursor cells and their differentiation. If the renewal phase is shortened, the decrease in the precursor pool results in anemia; conversely, impaired differentiation increases the number of proliferating progenitors and the potential risk of leukemic transformation. Using gene ablation, we have discovered 2 self-sustaining signal transduction loops that antagonize each other and regulate erythroid progenitor proliferation and differentiation, respectively. We identify Raf-1 as the main activator of the MEK/ERK cascade and as the key molecule in maintaining progenitor proliferation. Differentiation, in contrast, is mediated by Fas via the activation of both the ASK1/JNK/p38 module and the caspase cascade. The point of convergence between the 2 cascades is activated ERK, which positively feeds back on the proliferation pathway by maintaining the expression of Raf-1, while inhibiting the expression of Fas and therefore differentiation. In turn, Fas, once expressed, antagonizes proliferation by exerting a negative feedback on ERK activation and Raf-1 expression. Simultaneously, Fas-mediated caspase activation precipitates differentiation. These results identify Raf-1 and Fas as the key molecules whose expression finely tunes erythropoiesis and the extent of ERK activation as the switch that tips the balance between them.


Assuntos
Eritroblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/farmacologia , Receptor fas/genética , Receptor fas/farmacologia , Animais , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Eritroblastos/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 103(5): 1325-30, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16432225

RESUMO

The kinases of the Raf family have been intensively studied as activators of the mitogen-activated protein kinase kinase/extra-cellular signal-regulated kinase (ERK) module in regulated and deregulated proliferation. Genetic evidence that Raf is required for ERK activation in vivo has been obtained in lower organisms, which express only one Raf kinase, but was hitherto lacking in mammals, which express more than one Raf kinase. Ablation of the two best studied Raf kinases, B-Raf and Raf-1, is lethal at midgestation in mice, hampering the detailed study of the essential functions of these proteins. Here, we have combined conventional and conditional gene ablation to show that B-Raf is essential for ERK activation and for vascular development in the placenta. B-Raf-deficient placentae show complete absence of phosphorylated ERK and strongly reduced HIF-1alpha and VEGF levels, whereas all these parameters are normal in Raf-1-deficient placentae. In addition, neither ERK phosphorylation nor development are affected in B-raf-deficient embryos that are born alive obtained by epiblast-restricted gene inactivation. The data demonstrate that B-Raf plays a nonredundant role in ERK activation during extraembyronic mammalian development in vivo.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas B-raf/metabolismo , Alelos , Animais , Proliferação de Células , Células Cultivadas , Éxons , Fibroblastos/metabolismo , Técnicas Genéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/biossíntese , Luciferases/metabolismo , Camundongos , Neovascularização Patológica , Fenótipo , Fosforilação , Placenta/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Cell Biol ; 171(6): 1013-22, 2005 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16365167

RESUMO

Ablation of the Raf-1 protein causes fetal liver apoptosis, embryonic lethality, and selective hypersensitivity to Fas-induced cell death. Furthermore, Raf-1-deficient cells show defective migration as a result of the deregulation of the Rho effector kinase Rok-alpha. In this study, we show that the kinase-independent modulation of Rok-alpha signaling is also the basis of the antiapoptotic function of Raf-1. Fas activation stimulates the formation of Raf-1-Rok-alpha complexes, and Rok-alpha signaling is up-regulated in Raf-1-deficient cells. This leads to increased clustering and membrane expression of Fas, which is rescued both by kinase-dead Raf-1 and by interfering with Rok-alpha or its substrate ezrin. Increased Fas clustering and membrane expression are also evident in the livers of Raf-1-deficient embryos, and genetically reducing Fas expression counteracts fetal liver apoptosis, embryonic lethality, and the apoptotic defects of embryonic fibroblasts. Thus, Raf-1 has an essential function in regulating Fas expression and setting the threshold of Fas sensitivity during embryonic life.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Animais , Apoptose/genética , Apoptose/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/fisiologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Genes Letais , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/embriologia , Fígado/metabolismo , Membranas/metabolismo , Camundongos , Camundongos Mutantes/embriologia , Camundongos Mutantes/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-raf/genética , Sensibilidade e Especificidade , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Quinases Associadas a rho
11.
J Cell Biol ; 168(6): 955-64, 2005 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-15753127

RESUMO

Raf kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1-deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-alpha to the plasma membrane. Raf-1 physically associates with Rok-alpha in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.


Assuntos
Movimento Celular , Proteínas Proto-Oncogênicas c-raf/fisiologia , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Células COS , Adesão Celular , Forma Celular , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Queratina-15 , Queratina-5 , Queratinócitos/metabolismo , Queratinas/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Testes de Precipitina , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Fatores de Tempo , Cicatrização
12.
Virology ; 322(1): 82-92, 2004 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15063119

RESUMO

Upon infection of its host Escherichia coli, satellite bacteriophage P4 can integrate its genome into the bacterial chromosome by Int-mediated site-specific recombination between the attP and the attB sites. The opposite event, excision, may either occur spontaneously or be induced by a superinfecting P2 helper phage. In this work, we demonstrate that the product of the P4 vis gene, a regulator of the P4 late promoters P(LL) and P(sid), is needed for prophage excision. This conclusion is supported by the following evidence: (i) P4 mutants carrying either a frameshift mutation or a deletion of the vis gene were unable to excise both spontaneously or upon P2 phage superinfection; (ii) expression of the Vis protein from a plasmid induced P4 prophage excision; (iii) excision depended on a functional integrase (Int) protein, thus suggesting that Vis is involved in the formation of the excision complex, rather than in the excision recombination event per se; (iv) Vis protein bound P4 DNA in the attP region at two distinct boxes (Box I and Box II), located between the int gene and the attP core region, and caused bending of the bound DNA. Furthermore, we mapped by primer extension the 5' end of the int transcript and found that ectopic expression of Vis reduced its signal intensity, suggesting that Vis is also involved in negative regulation of the int promoter.


Assuntos
Colífagos/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Clonagem Molecular , Sequência Consenso , DNA Viral/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Integrases/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Virais/biossíntese , Proteínas Virais/genética , Ativação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...