Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(27): e2308814, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38282203

RESUMO

There is a recent resurgence of interest in phage therapy (the therapeutic use of bacterial viruses) as an approach to eliminating difficult-to-treat infections. However, existing approaches for therapeutic phage selection and virulence testing are time-consuming, host-dependent, and facing reproducibility issues. Here, this study presents an innovative approach wherein integrated resonant photonic crystal (PhC) cavities in silicon are used as optical nanotweezers for probing and manipulating single bacteria and single virions with low optical power. This study demonstrates that these nanocavities differentiate between a bacterium and a phage without labeling or specific surface bioreceptors. Furthermore, by tailoring the spatial extent of the resonant optical mode in the low-index medium, phage distinction across phenotypically distinct phage families is demonstrated. The work paves the road to the implementation of optical nanotweezers in phage therapy protocols.


Assuntos
Bacteriófagos , Pinças Ópticas , Vírion , Bacteriófagos/fisiologia
2.
Small ; 18(4): e2103765, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784093

RESUMO

Because of antibiotics misuse, the dramatic growth of antibioresistance threatens public health. Tests are indeed culture-based, and require therefore one to two days. This long time-to-result implies the use of large-spectrum antibiotherapies as a first step, in absence of pathogen characterization. Here, a breakthrough approach for a culture-less fast assessment of bacterial response to stress is proposed. It is based on non-destructive on-chip optical tweezing. A laser loads an optical nanobeam cavity whose evanescent part of the resonant field acts as a nano-tweezer for bacteria surrounding the cavity. Once optically trapped, the bacterium-nanobeam cavity interaction induces a shift of the resonance driven by the bacterial cell wall optical index. The analysis of the wavelength shift yields an assessment of viability upon stress at the single-cell scale. As a proof of concept, bacteria are stressed by incursion, before optical trapping, at different temperatures (45, 51, and 70 °C). Optical index changes correlate with the degree of thermal stress allowing to sort viable and dead bacteria. With this disruptive diagnosis method, bacterial viability upon stress is probed much faster (typically less than 4 h) than with conventional culture-based enumeration methods (24 h).


Assuntos
Pinças Ópticas , Viabilidade Microbiana
3.
PLoS One ; 16(3): e0248917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755710

RESUMO

The growing number of drug-resistant bacterial infections worldwide is driving renewed interest in phage therapy. Based on the use of a personalized cocktail composed of highly specific bacterial viruses, this therapy relies on a range of tests on agar media to determine the most active phage on a given bacterial target (phage susceptibility testing), or to isolate new lytic phages from an environmental sample (enrichment of phage banks). However, these culture-based techniques are still solely interpreted through direct visual detection of plaques. The main objective of this work is to investigate computer-assisted methods in order to ease and accelerate diagnosis in phage therapy but also to study phage plaque growth kinetics. For this purpose, we designed a custom wide-field lensless imaging device, which allows continuous monitoring over a very large area sensor (3.3 cm2). Here we report bacterial susceptibility to Staphylococcus aureus phage in 3 hr and estimation of infectious titer in 8 hr 20 min. These are much shorter time-to-results than the 12 to 24 hours traditionally needed, since naked eye observation and counting of phage plaques is still the most widely used technique for susceptibility testing prior to phage therapy. Moreover, the continuous monitoring of the samples enables the study of plaque growth kinetics, which enables a deeper understanding of the interaction between phage and bacteria. Finally, thanks to the 4.3 µm resolution, we detect phage-resistant bacterial microcolonies of Klebsiella pneumoniae inside the boundaries of phage plaques and thus show that our prototype is also a suitable device to track phage resistance. Lensless imaging is therefore an all-in-one method that could easily be implemented in cost-effective and compact devices in phage laboratories to help with phage therapy diagnosis.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Lentes , Bactérias/virologia , Cinética , Fatores de Tempo
4.
Opt Express ; 16(1): 279-86, 2008 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-18521159

RESUMO

We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Deltalambda/lambda~10(-3)) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.


Assuntos
Nanotecnologia/instrumentação , Óptica e Fotônica/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
5.
C R Biol ; 328(8): 713-23, 2005 Aug.
Artigo em Francês | MEDLINE | ID: mdl-16125649

RESUMO

In Triticum turgidum subsp. durum (Desf.) Husn., the utilization of in vitro anther culture is hampered by the very high frequency of albinism of the regenerated plants reaching in most cases 100%. Only in vitro ovary culture or intergeneric crosses with maize produce gynogenetic green haploid and doubled haploid plants. This paper is concerned with another very interesting method of androgenetic doubled haploid plant production, the in vitro isolated microspore culture. It is shown that this method, associated with cold alone or cold plus mannitol pre-treatments, of the spikes kept within their sheath leaves, during different times, have significant positive effects, not only on embryo production, but also on chlorophyllian plant regeneration. All pre-treatments and control taken together, a total of 16 490 embryos was obtained from 17.4 x 10(6) microspores of two T. durum varieties, among which 9320 embryos were transferred to regeneration medium and developed 150 chlorophyllian plants. Thus a long-term (five weeks) 4 degrees C cold pre-treatment of the microspores could be promising for green regeneration in durum wheat.


Assuntos
Clorofila/fisiologia , Esporos/fisiologia , Triticum/fisiologia , Temperatura Baixa , Germinação , Manitol/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Estações do Ano , Esporos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...