Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095019

RESUMO

Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for a significant share of childhood cancer deaths. Prior studies utilizing RNA sequencing of bulk tumor populations showed two predominant cell states characterized by high and low expression of neuronal genes. Although cells respond to treatment by altering their gene expression, it is unclear whether this reflects shifting balances of distinct subpopulations or plasticity of individual cells. Using mouse and human neuroblastoma cell lines lacking MYCN amplification, we show that the antigen CD49b (also known as ITGA2) distinguishes these subpopulations. CD49b expression marked proliferative cells with an immature gene expression program, whereas CD49b-negative cells expressed differentiated neuronal marker genes and were non-cycling. Sorted populations spontaneously switched between CD49b expression states in culture, and CD49b-negative cells could generate rapidly growing, CD49b-positive tumors in mice. Although treatment with the chemotherapy drug doxorubicin selectively killed CD49b-positive cells in culture, the CD49b-positive population recovered when treatment was withdrawn. We profiled histone 3 (H3) lysine 27 acetylation (H3K27ac) to identify enhancers and super enhancers that were specifically active in each population and found that CD49b-negative cells maintained the priming H3 lysine 4 methylation (H3K4me1) mark at elements that were active in cells with high expression of CD49b. Improper maintenance of primed enhancer elements might thus underlie cellular plasticity in neuroblastoma, representing potential therapeutic targets for this lethal tumor.


Assuntos
Histonas , Neuroblastoma , Humanos , Animais , Camundongos , Histonas/metabolismo , Lisina/metabolismo , Integrina alfa2/metabolismo , Diferenciação Celular/genética , Neuroblastoma/metabolismo
2.
Cell Rep ; 42(3): 112194, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857184

RESUMO

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Assuntos
Sistema Nervoso Entérico , Gânglios , Multiômica , Neurogênese , Neuroglia , Análise de Célula Única , Neuroglia/classificação , Neuroglia/citologia , Neuroglia/metabolismo , Neurogênese/genética , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , RNA/análise , RNA/genética , Gânglios/citologia , Masculino , Feminino , Animais , Camundongos , Sistema Nervoso Entérico/citologia , Análise da Expressão Gênica de Célula Única , Técnicas de Cultura de Células , Intestino Delgado/citologia , Desmame
3.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779913

RESUMO

Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.


Assuntos
Sistema Nervoso Entérico , Camundongos , Animais , Crista Neural/metabolismo , Transcriptoma , Movimento Celular/fisiologia , Intestinos
4.
Stem Cells Transl Med ; 11(12): 1232-1244, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36322091

RESUMO

Cell therapy offers the potential to replace the missing enteric nervous system (ENS) in patients with Hirschsprung disease (HSCR) and to restore gut function. The Schwann cell (SC) lineage has been shown to generate enteric neurons pre- and post-natally. Here, we aimed to isolate SCs from the aganglionic segment of HSCR and to determine their potential to restore motility in the aganglionic colon. Proteolipid protein 1 (PLP1) expressing SCs were isolated from the extrinsic nerve fibers present in the aganglionic segment of postnatal mice and patients with HSCR. Following 7-10 days of in vitro expansion, HSCR-derived SCs were transplanted into the aganglionic mouse colon ex vivo and in vivo. Successful engraftment and neuronal differentiation were confirmed immunohistochemically and calcium activity of transplanted cells was demonstrated by live cell imaging. Organ bath studies revealed the restoration of motor function in the recipient aganglionic smooth muscle. These results show that SCs isolated from the aganglionic segment of HSCR mouse can generate functional neurons within the aganglionic gut environment and restore the neuromuscular activity of recipient mouse colon. We conclude that HSCR-derived SCs represent a potential autologous source of neural progenitor cells for regenerative therapy in HSCR.


Assuntos
Doença de Hirschsprung , Células-Tronco Neurais , Camundongos , Animais , Doença de Hirschsprung/terapia , Doença de Hirschsprung/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/transplante , Células de Schwann/metabolismo
5.
Front Cell Dev Biol ; 10: 917243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959491

RESUMO

Hirschsprung disease is most often characterized by aganglionosis limited to the distal colon and rectum, and mice lacking the Endothelin receptor type B (Ednrb) faithfully recapitulate this phenotype. However, despite the presence of enteric ganglia in the small intestine, both human patients and Ednrb-/- mice suffer from dysmotility and altered gastrointestinal function, thus raising the possibility of enteric nervous system (ENS) abnormalities proximal to the aganglionic region. We undertook the present study to determine whether abnormalities with the ENS in ganglionated regions may account for abnormal gastrointestinal function. We performed single-cell RNA sequencing on ENS cells from the small intestine of Ednrb-/- mice and compared the results to a published single-cell dataset. Our results identified a missing population of neurons marked by the enzyme Gad2, which catalyzes the production of γ-Aminobutyric acid (GABA), in the small intestine of Ednrb-/- animals. This result was confirmed by immunostaining enteric ganglia from Ednrb-/- mice and their wild-type littermates. These data show for the first time that ganglionated regions of the Hirschsprung gut lack a neuronal subpopulation, which may explain the persistent gastrointestinal dysfunction after surgical correction of Hirschsprung disease.

6.
Sci Transl Med ; 14(646): eabl8753, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613280

RESUMO

Stem cell therapies for nervous system disorders are hindered by a lack of accessible autologous sources of neural stem cells (NSCs). In this study, neural crest-derived Schwann cells are found to populate nerve fiber bundles (NFBs) residing in mouse and human subcutaneous adipose tissue (SAT). NFBs containing Schwann cells were harvested from mouse and human SAT and cultured in vitro. During in vitro culture, SAT-derived Schwann cells remodeled NFBs to form neurospheres and exhibited neurogenic differentiation potential. Transcriptional profiling determined that the acquisition of these NSC properties can be attributed to dedifferentiation processes in cultured Schwann cells. The emerging population of cells were termed SAT-NSCs because of their considerably distinct gene expression profile, cell markers, and differentiation potential compared to endogenous Schwann cells existing in vivo. SAT-NSCs successfully engrafted to the gastrointestinal tract of mice, migrated longitudinally and circumferentially within the muscularis, differentiated into neurons and glia, and exhibited neurochemical coding and calcium signaling properties consistent with an enteric neuronal phenotype. These cells rescued functional deficits associated with colonic aganglionosis and gastroparesis, indicating their therapeutic potential as a cell therapy for gastrointestinal dysmotility. SAT can be harvested easily and offers unprecedented accessibility for the derivation of autologous NSCs from adult tissues. Evidence from this study indicates that SAT-NSCs are not derived from mesenchymal stem cells and instead originate from Schwann cells within NFBs. Our data describe efficient isolation procedures for mouse and human SAT-NSCs and suggest that these cells have potential for therapeutic applications in gastrointestinal motility disorders.


Assuntos
Células-Tronco Neurais , Células de Schwann , Tecido Adiposo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Neurogênese , Células de Schwann/metabolismo , Gordura Subcutânea
7.
Hum Mutat ; 33(2): 316-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095942

RESUMO

Autosomal recessive renal tubular dysgenesis (RTD) is a severe disorder of renal tubular development characterized by early onset and persistent fetal anuria leading to oligohydramnios and the Potter sequence, associated with skull ossification defects. Early death occurs in most cases from anuria, pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review the series of 54 distinct mutations identified in 48 unrelated families. Most of them are novel and ACE mutations are the most frequent, observed in two-thirds of families (64.6%). The severity of the clinical course was similar whatever the mutated gene, which underlines the importance of a functional RAS in the maintenance of blood pressure and renal blood flow during the life of a human fetus. Renal hypoperfusion, whether genetic or secondary to a variety of diseases, precludes the normal development/ differentiation of proximal tubules. The identification of the disease on the basis of precise clinical and histological analyses and the characterization of the genetic defects allow genetic counseling and early prenatal diagnosis.


Assuntos
Genes Recessivos , Mutação , Sistema Renina-Angiotensina/genética , Anormalidades Urogenitais/genética , Angiotensinogênio/genética , Animais , Modelos Animais de Doenças , Estudos de Associação Genética , Humanos , Túbulos Renais Proximais/anormalidades , Peptidil Dipeptidase A/genética , Receptor Tipo 1 de Angiotensina/genética , Renina/genética , Anormalidades Urogenitais/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...