Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 13: 219, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26152232

RESUMO

OBJECTIVE: Mesenchymal stromal cells (MSCs) expanded in vitro have been proposed as a potential therapy for congenital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intradermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs). METHODS: Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capacity. When an adequate number of cells (ASCs 10 × 10(6) and BM-MSCs 3 × 10(6), because of their low rate of proliferation) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 21 days of treatment. RESULTS: Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also improved restoration of skin architecture during wound healing. CONCLUSION: The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are however necessary to validate the best skin regeneration technique, which could be used in pediatric surgical translational research.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Pele/patologia , Procedimentos Cirúrgicos Operatórios , Cicatrização , Tecido Adiposo/citologia , Administração Cutânea , Animais , Células da Medula Óssea/citologia , Núcleo Celular/metabolismo , Proliferação de Células , Criança , Colágeno/metabolismo , Epitélio/patologia , Feminino , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Coelhos , Regeneração
2.
Stem Cells ; 33(3): 859-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25420617

RESUMO

Sarcomas are frequent tumors in children and young adults that, despite a relative chemo-sensitivity, show high relapse rates with up to 80% of metastatic patients dying in 5 years from diagnosis. The real ontogeny of sarcomas is still debated and evidences suggest they may derive from precursors identified within mesenchymal stromal/stem cells (MSC) fractions. Recent studies on sarcoma microenvironment additionally indicated that MSC could take active part in generation of a supportive stroma. Based on this knowledge, we conceived to use modified MSC to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) targeting different sarcoma histotypes. Gene modified MSC expressing TRAIL were cocultured with different osteosarcoma, rhabdomyosarcoma, and Ewing's Sarcoma (ES) cell lines assessing viability and caspase-8 activation. An in vivo model focused on ES was then implemented considering the impact of MSC-TRAIL on tumor size, apoptosis, and angiogenesis. MSC expressing TRAIL induced significantly high apoptosis in all tested lines. Sarcoma death was specifically associated with caspase-8 activation starting from 8 hours of coculture with MSC-TRAIL. When injected into pre-established ES xenotransplants, MSC-TRAIL persisted within its stroma, causing significant tumor apoptosis versus control groups. Additional histological and in vitro studies reveal that MSC-TRAIL could also exert potent antiangiogenic functions. Our results suggest that MSC as TRAIL vehicles could open novel therapeutic opportunities for sarcoma by multiple mechanisms.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Sarcoma/terapia , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Animais , Apoptose/fisiologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Osteossarcoma/patologia , Osteossarcoma/terapia , Rabdomiossarcoma/patologia , Rabdomiossarcoma/terapia , Sarcoma/patologia , Sarcoma de Ewing/patologia , Sarcoma de Ewing/terapia , Ligante Indutor de Apoptose Relacionado a TNF/genética
3.
Biomed Res Int ; 2013: 901821, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23607099

RESUMO

Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications.


Assuntos
Decídua/citologia , Menstruação/sangue , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Biomarcadores/análise , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Endométrio/citologia , Feminino , Humanos , Gravidez
4.
Adv Biochem Eng Biotechnol ; 130: 209-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22990585

RESUMO

: Mesenchymal stromal/stem cells (MSC) are adult multipotent progenitors with fibroblast-like morphology able to differentiate into adipocytic, osteogenic, chondrogenic, and myogenic lineages. Due to these properties, MSC have been studied and introduced as therapeutics in regenerative medicine. Preliminary studies have also shown a possible involvement of MSC as precursors of cellular elements within tumor microenvironments, in particular tumor-associated fibroblasts (TAF). Among a number of different possible origins, TAF may originate from a pool of circulating progenitors from bone marrow or adipose tissue-derived MSC. There is growing evidence to corroborate that cells immunophenotypically defined as MSC are able to reside as TAF influencing the tumor microenvironment in a potentially bi-phasic and obscure manner: either promoting or inhibiting growth depending on tumor context and MSC sources. Here we focus on relationships between the tumor microenvironment, cancer cells, and MSC, analyzing their diverse ability to influence neoplastic development. Associated activities include MSC homing driven by the secretion of various mediators, differentiation towards TAF phenotypes, and reciprocal interactions with the tumor cells. These are reviewed here with the aim of understanding the biological functions of MSC that can be exploited for innovative cancer therapy.

5.
Am J Cancer Res ; 1(6): 787-805, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22016827

RESUMO

A tumor represents a complex structure containing malignant cells strictly coupled with a large variety of surrounding cells constituting the tumor stroma (TS). In recent years, the importance of TS for cancer initiation, development, local invasion and metastases has become increasingly clear allowing the identification of TS as one of the possible ways to indirectly target tumors. Inside the heterogeneous stromal cell population, tumor associated fibroblasts (TAF) play a crucial role providing both functional and supportive environments. During both tumor and stroma development, several findings suggest that TAF could be recruited from different sources such as locally derived host fibroblasts, via epithelial/endothelial mesenchymal transitions or from circulating pools of fibroblasts deriving form mesenchymal progenitors, namely mesenchymal stem/stromal cells (MSC). These insights prompted scientists to identify multimodal approaches to target TS by biomolecules, monoclonal antibodies, and more recently via cell based strategies. These latter strategies appear extremely promising, although still associated with debated and unclear findings. This review discusses crosstalk between cancers and their stroma, dissecting specific tumor types, such as sarcoma, pancreatic and breast carcinoma, where stroma plays distinct paradigmatic roles. The recognition of these distinct stromal functions may help in planning effective and safer approaches aimed either to eradicate or to substitute TS by novel compounds and/or MSC having specific killing activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...