Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 147, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941275

RESUMO

Building stock management is becoming a global societal and political issue, inter alia because of growing sustainability concerns. Comprehensive and openly accessible building stock data can enable impactful research exploring the most effective policy options. In Europe, efforts from citizen and governments generated numerous relevant datasets but these are fragmented and heterogeneous, thus hindering their usability. Here, we present EUBUCCO v0.1, a database of individual building footprints for ~202 million buildings across the 27 European Union countries and Switzerland. Three main attributes - building height, construction year and type - are included for respectively 73%, 24% and 46% of the buildings. We identify, collect and harmonize 50 open government datasets and OpenStreetMap, and perform extensive validation analyses to assess the quality, consistency and completeness of the data in every country. EUBUCCO v0.1 provides the basis for high-resolution urban sustainability studies across scales - continental, comparative or local studies - using a centralized source and is relevant for a variety of use cases, e.g., for energy system analysis or natural hazard risk assessments.

3.
Sci Data ; 9(1): 719, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418857

RESUMO

Data on women's living conditions and socio-economic development are important for understanding and addressing the pronounced challenges and inequalities faced by women worldwide. While such information is increasingly available at the national level, comparable data at the sub-national level are missing. We here present the LivWell global longitudinal dataset, which includes a set of key indicators on women's socio-economic status, health and well-being, access to basic services and demographic outcomes. It covers 447 regions in 52 countries and includes a total of 265 different indicators. The majority of these are based on 199 Demographic and Health Surveys (DHS) for the period 1990-2019 and are complemented by extensive information on socio-economic and climatic conditions in the respective regions. The resulting dataset offers various opportunities for policy-relevant research on gender inequality, inclusive development and demographic trends at the sub-national level.


Assuntos
Condições Sociais , Saúde da Mulher , Feminino , Humanos , Classe Social , Fatores Socioeconômicos
4.
PLoS One ; 15(12): e0242010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296369

RESUMO

Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.


Assuntos
Planejamento de Cidades/métodos , Aprendizado de Máquina , Cidades/economia , Planejamento de Cidades/economia , Planejamento de Cidades/tendências , Europa (Continente) , Previsões/métodos , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências
5.
Lancet Planet Health ; 4(7): e271-e279, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32681898

RESUMO

BACKGROUND: Health-care services are necessary for sustaining and improving human wellbeing, yet they have an environmental footprint that contributes to environment-related threats to human health. Previous studies have quantified the carbon emissions resulting from health care at a global level. We aimed to provide a global assessment of the wide-ranging environmental impacts of this sector. METHODS: In this multiregional input-output analysis, we evaluated the contribution of health-care sectors in driving environmental damage that in turn puts human health at risk. Using a global supply-chain database containing detailed information on health-care sectors, we quantified the direct and indirect supply-chain environmental damage driven by the demand for health care. We focused on seven environmental stressors with known adverse feedback cycles: greenhouse gas emissions, particulate matter, air pollutants (nitrogen oxides and sulphur dioxide), malaria risk, reactive nitrogen in water, and scarce water use. FINDINGS: Health care causes global environmental impacts that, depending on which indicator is considered, range between 1% and 5% of total global impacts, and are more than 5% for some national impacts. INTERPRETATION: Enhancing health-care expenditure to mitigate negative health effects of environmental damage is often promoted by health-care practitioners. However, global supply chains that feed into the enhanced activity of health-care sectors in turn initiate adverse feedback cycles by increasing the environmental impact of health care, thus counteracting the mission of health care. FUNDING: Australian Research Council, National eResearch Collaboration Tools and Resources project.


Assuntos
Poluentes Ambientais/efeitos adversos , Poluição Ambiental/efeitos adversos , Saúde Global , Setor de Assistência à Saúde , Malária/epidemiologia , Abastecimento de Água/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Humanos , Risco
7.
Sci Rep ; 7(1): 14659, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116205

RESUMO

Cities are economically open systems that depend on goods and services imported from national and global markets to satisfy their material and energy requirements. Greenhouse Gas (GHG) footprints are thus a highly relevant metric for urban climate change mitigation since they not only include direct emissions from urban consumption activities, but also upstream emissions, i.e. emissions that occur along the global production chain of the goods and services purchased by local consumers. This complementary approach to territorially-focused emission accounting has added critical nuance to the debate on climate change mitigation by highlighting the responsibility of consumers in a globalized economy. Yet, city officials are largely either unaware of their upstream emissions or doubtful about their ability to count and control them. This study provides the first internationally comparable GHG footprints for four cities (Berlin, Delhi NCT, Mexico City, and New York metropolitan area) applying a consistent method that can be extended to other global cities using available data. We show that upstream emissions from urban household consumption are in the same order of magnitude as cities' overall territorial emissions and that local policy leverage to reduce upstream emissions is larger than typically assumed.

8.
Proc Natl Acad Sci U S A ; 112(20): 6283-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25583508

RESUMO

The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...