Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
2.
Nat Commun ; 14(1): 476, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717561

RESUMO

The adaptive immune response is under circadian control, yet, why adaptive immune reactions continue to exhibit circadian changes over long periods of time is unknown. Using a combination of experimental and mathematical modeling approaches, we show here that dendritic cells migrate from the skin to the draining lymph node in a time-of-day-dependent manner, which provides an enhanced likelihood for functional interactions with T cells. Rhythmic expression of TNF in the draining lymph node enhances BMAL1-controlled ICAM-1 expression in high endothelial venules, resulting in lymphocyte infiltration and lymph node expansion. Lymph node cellularity continues to be different for weeks after the initial time-of-day-dependent challenge, which governs the immune response to vaccinations directed against Hepatitis A virus as well as SARS-CoV-2. In this work, we present a mechanistic understanding of the time-of-day dependent development and maintenance of an adaptive immune response, providing a strategy for using time-of-day to optimize vaccination regimes.


Assuntos
COVID-19 , Relógios Circadianos , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Imunidade Adaptativa , Vacinação , Linfonodos
3.
Nature ; 614(7946): 136-143, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470303

RESUMO

The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.


Assuntos
Linfócitos T CD8-Positivos , Ritmo Circadiano , Células Dendríticas , Melanoma , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Camundongos Endogâmicos C57BL , Antígeno B7-1 , Antígenos de Neoplasias/imunologia , Linfonodos , Ritmo Circadiano/imunologia
5.
Sci Signal ; 15(744): eabe6909, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881691

RESUMO

The assessment of leukocyte activation in vivo is mainly based on surrogate parameters, such as cell shape changes and migration patterns. Consequently, additional parameters are required to dissect the complex spatiotemporal activation of leukocytes during inflammation. Here, we showed that intravital microscopy of myeloid leukocyte Ca2+ signals with Ca2+ reporter mouse strains combined with bioinformatic signal analysis provided a tool to assess their activation in vivo. We demonstrated by two-photon microscopy that tissue-resident macrophages reacted to sterile inflammation in the cremaster muscle with Ca2+ transients in a distinct spatiotemporal pattern. Moreover, through high-resolution, intravital spinning disk confocal microscopy, we identified the intracellular Ca2+ signaling patterns of neutrophils during the migration cascade in vivo. These patterns were modulated by the Ca2+ channel Orai1 and Gαi-coupled GPCRs, whose effects were evident through analysis of the range of frequencies of the Ca2+ signal (frequency spectra), which provided insights into the complex patterns of leukocyte Ca2+ oscillations. Together, these findings establish Ca2+ frequency spectra as an additional dimension to assess leukocyte activation and migration during inflammation in vivo.


Assuntos
Cálcio , Leucócitos , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Inflamação , Microscopia Intravital/métodos , Leucócitos/metabolismo , Camundongos
6.
Sci Adv ; 8(23): eabl5162, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675399

RESUMO

Tumor-associated lymphatic vessels promote metastasis and regulate antitumor immune responses. Here, we assessed the impact of cytotoxic T cells on the local lymphatic vasculature and concomitant tumor dissemination during an antitumor response. Interferon-γ (IFN-γ) released by effector T cells enhanced the expression of immunosuppressive markers by tumor-associated lymphatic endothelial cells (LECs). However, at higher effector T cell densities within the tumor, T cell-based immunotherapies induced LEC apoptosis and decreased tumor lymphatic vessel density. As a consequence, lymphatic flow was impaired, and lymph node metastasis was reduced. Mechanistically, T cell-mediated tumor cell death induced the release of tumor antigens and cross-presentation by tumor LECs, resulting in antigen-specific LEC killing by T cells. When LECs lacked the IFN-γ receptor expression, LEC killing was abrogated, indicating that IFN-γ is indispensable for reducing tumor-associated lymphatic vessel density and drainage. This study provides insight into how cytotoxic T cells modulate tumor lymphatic vessels and may help to improve immunotherapeutic protocols.


Assuntos
Células Endoteliais , Interferon gama , Antígenos de Neoplasias , Apresentação Cruzada , Células Endoteliais/metabolismo , Humanos , Interferon gama/metabolismo , Metástase Linfática
7.
Nat Immunol ; 22(11): 1375-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663979

RESUMO

Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.


Assuntos
Imunidade Adaptativa , Quimiotaxia , Relógios Circadianos , Células Dendríticas/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Pele/imunologia , Idoso , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Células Dendríticas/metabolismo , Feminino , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/metabolismo , Fatores de Tempo
8.
Front Immunol ; 12: 702345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489950

RESUMO

ß2 integrins mediate key processes during leukocyte trafficking. Upon leukocyte activation, the structurally bent ß2 integrins change their conformation towards an extended, intermediate and eventually high affinity conformation, which mediate slow leukocyte rolling and firm arrest, respectively. Translocation of talin1 to integrin adhesion sites by interactions with the small GTPase Rap1 and the Rap1 effector Riam precede these processes. Using Rap1 binding mutant talin1 and Riam deficient mice we show a strong Riam-dependent T cell homing process to lymph nodes in adoptive transfer experiments and by intravital microscopy. Moreover, neutrophils from compound mutant mice exhibit strongly increased rolling velocities to inflamed cremaster muscle venules compared to single mutants. Using Hoxb8 cell derived neutrophils generated from the mutant mouse strains, we show that both pathways regulate leukocyte rolling and adhesion synergistically by inducing conformational changes of the ß2 integrin ectodomain. Importantly, a simultaneous loss of both pathways results in a rolling phenotype similar to talin1 deficient neutrophils suggesting that ß2 integrin regulation primarily occurs via these two pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD18/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Proteínas de Membrana/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Knockout
9.
Cancer Immunol Res ; 9(7): 748-764, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33952631

RESUMO

Several solid malignancies trigger lymphangiogenesis, facilitating metastasis. Tumor-associated lymphatic vessels significantly contribute to the generation of an immunosuppressive tumor microenvironment (TME). Here, we have investigated the ability of tumoral lymphatic endothelial cells (LEC) to function as MHC class II-restricted antigen-presenting cells in the regulation of antitumor immunity. Using murine models of lymphangiogenic tumors engrafted under the skin, we have shown that tumoral LECs upregulate MHC class II and the MHC class II antigen-processing machinery, and that they promote regulatory T-cell (Treg) expansion ex vivo. In mice with LEC-restricted lack of MHC class II expression, tumor growth was severely impaired, whereas tumor-infiltrating effector T cells were increased. Reduction of tumor growth and reinvigoration of tumor-specific T-cell responses both resulted from alterations of the tumor-infiltrating Treg transcriptome and phenotype. Treg-suppressive functions were profoundly altered in tumors lacking MHC class II in LECs. No difference in effector T-cell responses or Treg phenotype and functions was observed in tumor-draining lymph nodes, indicating that MHC class II-restricted antigen presentation by LECs was required locally in the TME to confer potent suppressive functions to Tregs. Altogether, our study suggests that MHC class II-restricted antigen-presenting tumoral LECs function as a local brake, dampening T cell-mediated antitumor immunity and promoting intratumoral Treg-suppressive functions.


Assuntos
Células Endoteliais/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Evasão Tumoral , Animais , Apresentação de Antígeno , Comunicação Celular/imunologia , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/imunologia , Feminino , Humanos , Linfonodos/citologia , Linfonodos/imunologia , Vasos Linfáticos/citologia , Vasos Linfáticos/imunologia , Camundongos , Cultura Primária de Células , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia
10.
EMBO Mol Med ; 13(6): e13110, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998175

RESUMO

High intratumoral levels of urokinase-type plasminogen activator (uPA)-plasminogen activator inhibitor-1 (PAI-1) heteromers predict impaired survival and treatment response in early breast cancer. The pathogenetic role of this protein complex remains obscure. Here, we demonstrate that heteromerization of uPA and PAI-1 multiplies the potential of the single proteins to attract pro-tumorigenic neutrophils. To this end, tumor-released uPA-PAI-1 utilizes very low-density lipoprotein receptor and mitogen-activated protein kinases to initiate a pro-inflammatory program in perivascular macrophages. This enforces neutrophil trafficking to cancerous lesions and skews these immune cells toward a pro-tumorigenic phenotype, thus supporting tumor growth and metastasis. Blockade of uPA-PAI-1 heteromerization by a novel small-molecule inhibitor interfered with these events and effectively prevented tumor progression. Our findings identify a therapeutically targetable, hitherto unknown interplay between hemostasis and innate immunity that drives breast cancer progression. As a personalized immunotherapeutic strategy, blockade of uPA-PAI-1 heteromerization might be particularly beneficial for patients with highly aggressive uPA-PAI-1high tumors.


Assuntos
Neoplasias da Mama , Neutrófilos , Feminino , Humanos , Metástase Linfática , Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tipo Uroquinase
11.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861848

RESUMO

Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.


Assuntos
Autoimunidade/imunologia , Células Endoteliais/imunologia , Macroautofagia/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Artrite/imunologia , Movimento Celular/imunologia , Células Cultivadas , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Esfingosina/análogos & derivados , Esfingosina/imunologia
12.
Haematologica ; 106(10): 2641-2653, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32703799

RESUMO

The recruitment of neutrophils from the microvasculature to the site of injury or infection represents a key event in the inflammatory response. Vitronectin (VN) is a multifunctional macromolecule abundantly present in blood and extracellular matrix. The role of this glycoprotein in the extravasation process of circulating neutrophils remains elusive. Employing advanced in vivo/ex vivo imaging techniques in different mouse models as well as in vitro methods, we uncovered a previously unrecognized function of VN in the transition of dynamic to static intravascular interactions of neutrophils with microvascular endothelial cells. These distinct properties of VN require the heteromerization of this glycoprotein with plasminogen activator inhibitor-1 (PAI- 1) on the activated venular endothelium and subsequent interactions of this protein complex with the scavenger receptor low-density lipoprotein receptor-related protein-1 on intravascularly adhering neutrophils. This induces p38 mitogen-activated protein kinases-dependent intracellular signaling events which, in turn, regulates the proper clustering of the b2 integrin lymphocyte function associated antigen-1 on the surface of these immune cells. As a consequence of this molecular interplay, neutrophils become able to stabilize their adhesion to the microvascular endothelium and, subsequently, to extravasate to the perivascular tissue. Hence, endothelial-bound VN-PAI-1 heteromers stabilize intravascular adhesion of neutrophils by coordinating b2 integrin clustering on the surface of these immune cells, thereby effectively controlling neutrophil trafficking to inflamed tissue. Targeting this protein complex might be beneficial for the prevention and treatment of inflammatory pathologies.


Assuntos
Antígenos CD18 , Vitronectina , Animais , Adesão Celular , Análise por Conglomerados , Células Endoteliais , Camundongos , Neutrófilos
13.
Nat Commun ; 11(1): 5778, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188196

RESUMO

Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets.


Assuntos
Plaquetas/patologia , Vasos Sanguíneos/patologia , Quimiotaxia , Inflamação/patologia , Pneumonia/sangue , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Adulto , Animais , Movimento Celular , Microambiente Celular , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Humanos , Lipopolissacarídeos , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos C57BL , Microvasos/patologia , Pneumonia/microbiologia , Pseudópodes/metabolismo
14.
Haematologica ; 105(7): 1845-1856, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699792

RESUMO

Leukocyte recruitment into inflamed tissue is highly dependent on the activation and binding of integrins to their respective ligands, followed by the induction of various signaling events within the cell referred to as outside-in signaling. Src family kinases (SFK) are the central players in the outside-in signaling process, assigning them a critical role for proper immune cell function. Our study investigated the role of SFK on neutrophil recruitment in vivo using Hck-/- Fgr-/- Lyn-/- mice, which lack SFK expressed in neutrophils. We show that loss of SFK strongly reduces neutrophil adhesion and post-arrest modifications in a shear force dependent manner. Additionally, we found that in the absence of SFK, neutrophils display impaired Rab27a-dependent surface mobilization of neutrophil elastase, VLA3 and VLA6 containing vesicles. This results in a defect in neutrophil vascular basement membrane penetration and thus strongly impaired extravasation. Taken together, we demonstrate that SFK play a role in neutrophil post-arrest modifications and extravasation during acute inflammation. These findings may support the current efforts to use SFK-inhibitors in inflammatory diseases with unwanted neutrophil recruitment.


Assuntos
Neutrófilos , Quinases da Família src , Animais , Membrana Basal , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas , Quinases da Família src/genética
15.
Circulation ; 140(13): 1100-1114, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31401849

RESUMO

BACKGROUND: The incidence of acute cardiovascular complications is highly time-of-day dependent. However, the mechanisms driving rhythmicity of ischemic vascular events are unknown. Although enhanced numbers of leukocytes have been linked to an increased risk of cardiovascular complications, the role that rhythmic leukocyte adhesion plays in different vascular beds has not been studied. METHODS: We evaluated leukocyte recruitment in vivo by using real-time multichannel fluorescence intravital microscopy of a tumor necrosis factor-α-induced acute inflammation model in both murine arterial and venous macrovasculature and microvasculature. These approaches were complemented with genetic, surgical, and pharmacological ablation of sympathetic nerves or adrenergic receptors to assess their relevance for rhythmic leukocyte adhesion. In addition, we genetically targeted the key circadian clock gene Bmal1 (also known as Arntl) in a lineage-specific manner to dissect the importance of oscillations in leukocytes and components of the vessel wall in this process. RESULTS: In vivo quantitative imaging analyses of acute inflammation revealed a 24-hour rhythm in leukocyte recruitment to arteries and veins of the mouse macrovasculature and microvasculature. Unexpectedly, although in arteries leukocyte adhesion was highest in the morning, it peaked at night in veins. This phase shift was governed by a rhythmic microenvironment and a vessel type-specific oscillatory pattern in the expression of promigratory molecules. Differences in cell adhesion molecules and leukocyte adhesion were ablated when disrupting sympathetic nerves, demonstrating their critical role in this process and the importance of ß2-adrenergic receptor signaling. Loss of the core clock gene Bmal1 in leukocytes, endothelial cells, or arterial mural cells affected the oscillations in a vessel type-specific manner. Rhythmicity in the intravascular reactivity of adherent leukocytes resulted in increased interactions with platelets in the morning in arteries and in veins at night with a higher predisposition to acute thrombosis at different times as a consequence. CONCLUSIONS: Together, our findings point to an important and previously unrecognized role of artery-associated sympathetic innervation in governing rhythmicity in vascular inflammation in both arteries and veins and its potential implications in the occurrence of time-of-day-dependent vessel type-specific thrombotic events.


Assuntos
Artérias/imunologia , Endotélio Vascular/metabolismo , Inflamação/imunologia , Leucócitos/fisiologia , Trombose/fisiopatologia , Veias/imunologia , Animais , Artérias/inervação , Artérias/patologia , Adesão Celular , Células Cultivadas , Relógios Circadianos , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Humanos , Microscopia Intravital , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodicidade , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático , Fator de Necrose Tumoral alfa/metabolismo , Veias/inervação , Veias/patologia
16.
Trends Immunol ; 40(6): 524-537, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31109762

RESUMO

The number of leukocytes circulating in blood in mammals is under circadian control (i.e., ∼24h). We summarize here latest findings on the mechanisms governing leukocyte migration from the blood into various organs, focusing on the distinct leukocyte subtype- and tissue-specific molecules involved. We highlight the oscillatory expression patterns of adhesion molecules, chemokines, and their receptors that are expressed on endothelial cells and leukocytes, and which are crucial regulators of rhythmic leukocyte recruitment. We also discuss the relevance of clock genes for leukocyte function and migration. Finally, we compare immune cell rhythms under steady-state conditions as well as during inflammation and disease, and we postulate how these findings provide potential new avenues for therapeutic intervention.


Assuntos
Quimiotaxia de Leucócito/imunologia , Ritmo Circadiano/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Imunidade Adaptativa , Animais , Quimiotaxia de Leucócito/genética , Suscetibilidade a Doenças , Homeostase/imunologia , Humanos , Imunidade Inata , Imunomodulação , Leucócitos/patologia , Especificidade de Órgãos , Fatores de Tempo
17.
J Exp Med ; 216(2): 350-368, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30647120

RESUMO

Heart failure due to dilated cardiomyopathy is frequently caused by myocarditis. However, the pathogenesis of myocarditis remains incompletely understood. Here, we report the presence of neutrophil extracellular traps (NETs) in cardiac tissue of patients and mice with myocarditis. Inhibition of NET formation in experimental autoimmune myocarditis (EAM) of mice substantially reduces inflammation in the acute phase of the disease. Targeting the cytokine midkine (MK), which mediates NET formation in vitro, not only attenuates NET formation in vivo and the infiltration of polymorphonuclear neutrophils (PMNs) but also reduces fibrosis and preserves systolic function during EAM. Low-density lipoprotein receptor-related protein 1 (LRP1) acts as the functionally relevant receptor for MK-induced PMN recruitment as well as NET formation. In summary, NETosis substantially contributes to the pathogenesis of myocarditis and drives cardiac inflammation, probably via MK, which promotes PMN trafficking and NETosis. Thus, MK as well as NETs may represent novel therapeutic targets for the treatment of cardiac inflammation.


Assuntos
Doenças Autoimunes/imunologia , Movimento Celular/imunologia , Armadilhas Extracelulares/imunologia , Midkina/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Neutrófilos/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Movimento Celular/genética , Armadilhas Extracelulares/genética , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Camundongos , Camundongos Transgênicos , Midkina/genética , Miocardite/genética , Miocardite/patologia , Miocárdio/patologia , Neutrófilos/patologia , Receptores de LDL/genética , Receptores de LDL/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
18.
Immunity ; 49(6): 1175-1190.e7, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527911

RESUMO

The number of leukocytes present in circulation varies throughout the day, reflecting bone marrow output and emigration from blood into tissues. Using an organism-wide circadian screening approach, we detected oscillations in pro-migratory factors that were distinct for specific vascular beds and individual leukocyte subsets. This rhythmic molecular signature governed time-of-day-dependent homing behavior of leukocyte subsets to specific organs. Ablation of BMAL1, a transcription factor central to circadian clock function, in endothelial cells or leukocyte subsets demonstrated that rhythmic recruitment is dependent on both microenvironmental and cell-autonomous oscillations. These oscillatory patterns defined leukocyte trafficking in both homeostasis and inflammation and determined detectable tumor burden in blood cancer models. Rhythms in the expression of pro-migratory factors and migration capacities were preserved in human primary leukocytes. The definition of spatial and temporal expression profiles of pro-migratory factors guiding leukocyte migration patterns to organs provides a resource for the further study of the impact of circadian rhythms in immunity.


Assuntos
Movimento Celular/imunologia , Ritmo Circadiano/imunologia , Regulação da Expressão Gênica/imunologia , Leucócitos/imunologia , Fatores de Transcrição/imunologia , Adulto , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Homeostase/genética , Homeostase/imunologia , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Elife ; 72018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30187863

RESUMO

The role of integrin-mediated adhesion during T cell progenitor homing to and differentiation within the thymus is ill-defined, mainly due to functional overlap. To circumvent compensation, we disrupted the hematopoietic integrin regulator kindlin-3 in mice and found a progressive thymus atrophy that is primarily caused by an impaired homing capacity of T cell progenitors to the vascularized thymus. Notably, the low shear flow conditions in the vascular system at midgestation allow kindlin-3-deficient fetal liver-derived T cell progenitors to extravasate via pharyngeal vessels and colonize the avascular thymus primordium. Once in the thymus, kindlin-3 promotes intrathymic T cell proliferation by facilitating the integrin-dependent crosstalk with thymic antigen presenting cells, while intrathymic T cell migration, maturation into single positive CD4 and CD8 T cells and release into the circulation proceed without kindlin-3. Thus, kindlin-3 is dispensable for integrin-mediated T cell progenitor adhesion and signalling at low and indispensable at high shear forces.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Linfócitos T/citologia , Timo/irrigação sanguínea , Animais , Animais Recém-Nascidos , Atrofia , Velocidade do Fluxo Sanguíneo , Adesão Celular , Proliferação de Células , Fígado/citologia , Fígado/embriologia , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Células-Tronco/metabolismo , Timócitos/patologia , Timo/patologia
20.
J Immunol ; 201(6): 1748-1764, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068598

RESUMO

Neutrophils are the first leukocytes to arrive at sites of injury during the acute inflammatory response. To maintain the polarized morphology during migration, nonmuscle myosins class II are essential, but studies using genetic models to investigate the role of Myh9 for neutrophil migration were missing. In this study, we analyzed the functional role of Myh9 on neutrophil trafficking using genetic downregulation of Myh9 in Vav-iCre+/Myh9wt/fl mice because the complete knockout of Myh9 in the hematopoietic system was lethal. Migration velocity and Euclidean distance were significantly diminished during mechanotactic migration of Vav-iCre+/Myh9wt/fl neutrophils compared with Vav-iCre-/Myh9wt/fl control neutrophils. Similar results were obtained for transmigration and migration in confined three-dimensional environments. Stimulated emission depletion nanoscopy revealed that a certain threshold of Myh9 was required to maintain proper F-actin dynamics in the front of the migrating cell. In laser-induced skin injury and in acute peritonitis, reduced Myh9 expression in the hematopoietic system resulted in significantly diminished neutrophil extravasation. Investigation of bone marrow chimeric mice in the peritonitis model revealed that the migration defect was cell intrinsic. Expression of Myh9-EGFP rescued the Myh9-related defects in two-dimensional and three-dimensional migration of Hoxb8-SCF cell-derived neutrophils generated from fetal liver cells with a Myh9 knockdown. Live cell imaging provided evidence that Myh9 was localized in branching lamellipodia and in the uropod where it may enable fast neutrophil migration. In summary, the severe migration defects indicate an essential and fundamental role of Myh9 for neutrophil trafficking in innate immunity.


Assuntos
Movimento Celular/imunologia , Imunidade Inata , Infiltração de Neutrófilos , Neutrófilos/imunologia , Miosina não Muscular Tipo IIA/imunologia , Pseudópodes/imunologia , Actinas/genética , Actinas/imunologia , Animais , Movimento Celular/genética , Camundongos , Camundongos Transgênicos , Cadeias Pesadas de Miosina , Neutrófilos/patologia , Miosina não Muscular Tipo IIA/genética , Peritonite/genética , Peritonite/imunologia , Peritonite/patologia , Pseudópodes/genética , Pele/imunologia , Pele/lesões , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...