Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 15(7): 820-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639504

RESUMO

Tumors that display a highly metastatic phenotype contain subpopulations of cells that display characteristics similar to embryonic stem cells. These cells exhibit the ability to undergo self-renewal; slowly replicate to retain a nucleoside analog label, leading to their definition as "label-retaining cells"; express specific surface markers such as CD44(+)/CD24(-/low) and CD133; and can give rise to cells of different lineages (i.e., they exhibit multipotency). Based on these characteristics, as well as their demonstrated ability to give rise to tumors in vivo, these cells have been defined as tumor-initiating cells (TICs), tumor-propagating cells, or cancer stem cells (CSCs). These cells are highly resistant to chemotherapeutic agents and radiation and are believed to be responsible for the development of both primary tumors and metastatic lesions at sites distant from the primary tumor. Established cancer cell lines contain CSCs, which can be propagated in vitro using defined conditions, to form 3D tumor spheroids. Because the vast majority of studies to identify cancer-associated genes and therapeutic targets use adherent cells grown in 2 dimensions on a plastic substrate, the multicellular composition of these 3D tumor spheroids presents both challenges and opportunities for their imaging and characterization. The authors describe approaches to image and analyze the properties of CSCs within 3D tumor spheroids, which can serve as the basis for defining the gene and protein signatures of CSCs and to develop therapeutic strategies that will effectively target this critically important population of cells that may be responsible for tumor progression.


Assuntos
Imageamento Tridimensional/métodos , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia , Biomarcadores Tumorais/metabolismo , Antígeno CD24/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Clonais , Humanos , Receptores de Hialuronatos/metabolismo , Fenótipo , Coloração e Rotulagem , Células Tumorais Cultivadas
2.
Cancer ; 116(11 Suppl): 2760-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20503408

RESUMO

BACKGROUND: Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer (LABC). Patients with IBC commonly present with skin metastasis, which are observed microscopically as tumor emboli within dermal lymphatics. These metastatic tumor cells aberrantly overexpress E-cadherin and exhibit the ability to undergo self-renewal and are highly invasive. There are no therapeutics yet identified that target the structure and functions of IBC tumor emboli. The present studies evaluated the effects of the pan-histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) using IBC tumor spheroids derived from established IBC cell lines and tumor spheroids derived from pleural effusion (PE) aspirates of patients with IBC and LABC, designated as PE-IBC and PE-LABC. METHODS: Methods used are as follows: culture of IBC cells from clonal density single cells in low adherence culture conditions that promote formation of IBC tumor spheroids; clonogenic assays; cell fractionation and Western blotting; confocal microscropy; and modified Boyden chamber invasion assays. RESULTS: SAHA inhibited self-renewal of IBC tumor spheroids from established IBC cell lines and PE-IBC and PE-LABC, as assessed by decreased clonogenic growth. SAHA blocked homotypic aggregation of the cells that comprised the IBC tumor spheroids leading to loss of their 3-dimensional (3D) structure, which was associated with a change in location of E-cadherin protein from the plasma membrane in untreated IBC tumor spheroids to the cytoplasm of cells within IBC tumor spheroids with SAHA treatment. In addition, SAHA blocked the robust invasion exhibited by IBC tumor spheroids of established cell lines as well as by tumor spheroids derived from PE-IBC and PE-LABC. CONCLUSIONS: SAHA targets the integrity and biological activities of IBC tumor spheroids and may be a promising agent to evaluate for its effectiveness in treatment of IBC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ácidos Hidroxâmicos/farmacologia , Esferoides Celulares , Neoplasias da Mama/metabolismo , Caderinas/análise , Agregação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/tratamento farmacológico , Invasividade Neoplásica/prevenção & controle , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...