Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891509

RESUMO

Abattoirs dispose of sheepskins as solid waste due to low price and poor demand for sheepskin leather. In principle, as an alternative to being disposed of in landfill, sheepskins can serve as a source of the protein collagen or the hydrolysis product, gelatin. In this research, sheepskins collected from abattoirs were used as a source of collagen. Three extraction methods were compared: acid extraction, acid with enzymes, and alkali extraction. The extracted material was characterized using scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), small angle X-ray scattering (SAXS), and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The collagen and gelatin extraction yield ranged from 3.1% to 4.8% with the product purity determined by hydroxyproline, ranging from 7.8% for the alkali process to 59% and 68% for the acid and acid-enzyme processes. SDS PAGE showed that the acid process produced fragments with molecular weights in the range 100 to >250 kDa, while acid-enzyme resulted in smaller fragments, below 30 kDa. The FTIR region of the amide I band at 1800-1550 cm-1, which was used as an indicator of the collagen and gelatin content, showed that the gelatin dominated in the acid extracts, and the alkaline extract contained a large portion of keratin. SAXS was found to be a sensitive method for showing the presence of intact collagen fibrils in materials from all of the extraction methods, albeit at low concentrations. Herein, sheepskin is shown to be a useful source for collagen-gelatin material of varying molecular weights.

2.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235936

RESUMO

Additive manufacturing can be a valuable tool to process polymeric composites reinforced with bio-based fibres, extending their use and opening new opportunities for more environmentally friendly materials. In this work, poly(lactic acid) (PLA) composites reinforced with regenerated cellulose fibres (lyocell) were processed into novel filaments and used for 3D printing. The Young's modulus of the filaments increased with the addition of fibres, but substantial porosity was observed in formulations with 20 and 30 wt% of fibre content. Nonetheless, the composites were easily printed, and the formulation with 10 wt% of fibres presented the best tensile properties of 3D printed samples with average tensile strength, Young's modulus, and strain at break of 64.2 MPa, 4.56 GPa, and 4.93%, respectively. It has been shown in this study that the printing process contributes to fibre alignment with small variations depending on the printing speed. Printed composite samples also had superior thermo-mechanical stability with a storage modulus up to 72 times higher than for neat PLA at 80 °C after the composite samples were heat-treated. In general, this work supports the potential use of regenerated cellulose fibres to reinforce PLA for 3D printing applications.

3.
Materials (Basel) ; 15(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013725

RESUMO

The main goal of this study was to improve the mechanical performance of polypropylene (PP) matrix composites through high hemp fibre content. In order to achieve high fibre content, the possibilities of different polymer sheet thicknesses and stacking arrangements were investigated. It was found that decreasing the overall thickness of fibre mats between two polymer sheets within the stacking arrangements of composites and so decreasing the distance the polymer needs to travel improved the fibre wetting and therefore improved the tensile properties. The strongest composite produced had a fibre content of about 60 wt%. At this fibre content, tensile strength and Young's modulus of the composites were found to be 3.0 and 6.9 times, respectively, higher than the control samples (polymer only samples), while figures for flexural strength and flexural modulus were 3.4 and 3.6, respectively.

4.
Biology (Basel) ; 11(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35741426

RESUMO

Collagen is the most abundant structural protein in animals. It is the major component of skin. It finds uses in cosmetics, medicine, yarn production and packaging. This paper reviews the extraction of collagen from hides of most consumed animals for meat with the focus on literature published since 2000. The different pretreatment and extraction techniques that have been investigated for producing collagen from animal skins are reviewed. Pretreatment by enzymatic, acid or alkaline methods have been used. Extraction by chemical hydrolysis, salt solubilization, enzymatic hydrolysis, ultrasound assisted extraction and other methods are described. Post-extraction purification methods are also explained. This compilation will be useful for anyone wishing to use collagen as a resource and wanting to further improve the extraction and purification methods.

5.
3D Print Addit Manuf ; 8(3): 193-200, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36654660

RESUMO

A biobased composite material with heat-triggered shape memory ability was successfully formulated for three-dimensional (3D) printing. It was produced from cellulose nanocrystals and cellulose micro-powder particles within a bioderived thermally cured polyester matrix based on glycerol, citric acid, and sebacic acid. The effect of curing duration on the material's shape memory behavior was quantified by using two thermo-mechanical approaches to measure recovery: (1) displacement in three-point bending and (2) angular recovery from a beam bent at 90° in a single cantilever setup. Extending curing duration increased the material's glass-transition temperature from -26°C after 6 h to 13°C after 72 h of curing. Fourier-transform infrared spectroscopy confirmed the associated progressive conversion of functional groups consistent with polyester formation. Slow recovery rates and low levels of shape recovery (22-70%) were found for samples cured less than 24 h. Those results also indicated a high dependence on the measurement approach. In contrast, samples cured for 48 and 72 h exhibited faster recovery rates, a significantly higher recovery percentage (90-100%) and were less sensitive to the measurement approach. Results demonstrated that once a sufficient curing threshold was achieved, additional curing time could be used to tune the material glass-transition temperature and create heat-triggered 3D-printed products.

6.
Bioinspir Biomim ; 16(1)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32987371

RESUMO

The complex structure of natural bio-organic matter has inspired scientists to utilise these as templates to design 'biomorphic materials', which retain the intricate architecture of the materials while acting as a useful bioactive material. Biomorphic hydroxyapatite-based fibres were synthesised usingHarakekeleaf fibre as a template, which constitutes a powerful method for manufacturing bioactive ceramic fibres. Furthermore, in creating the hydroxyapatite-based fibres, a natural source of calcium and phosphate ions (from bovine bone) was utilised to create the digest solution in which the leaf fibres were immersed prior to their calcination to form the inorganic fibres. Chemical, thermogravimetric and microscopic characterisation confirmed that the final product was able to successfully replicate the shape of the fibres and furthermore be transformed into calcium deficient, bone-like hydroxyapatite.


Assuntos
Asphodelaceae , Durapatita , Animais , Osso e Ossos , Cálcio , Bovinos , Folhas de Planta
7.
Materials (Basel) ; 11(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249999

RESUMO

Biomedical materials constitute a vast scientific research field, which is devoted to producing medical devices which aid in enhancing human life. In this field, there is an enormous demand for long-lasting implants and bone substitutes that avoid rejection issues whilst providing favourable bioactivity, osteoconductivity and robust mechanical properties. Hydroxyapatite (HAp)-based biomaterials possess a close chemical resemblance to the mineral phase of bone, which give rise to their excellent biocompatibility, so allowing for them to serve the purpose of a bone-substituting and osteoconductive scaffold. The biodegradability of HAp is low (Ksp ≈ 6.62 × 10-126) as compared to other calcium phosphates materials, however they are known for their ability to develop bone-like apatite coatings on their surface for enhanced bone bonding. Despite its favourable bone regeneration properties, restrictions on the use of pure HAp ceramics in high load-bearing applications exist due to its inherently low mechanical properties (including low strength and fracture toughness, and poor wear resistance). Recent innovations in the field of bio-composites and nanoscience have reignited the investigation of utilising different carbonaceous materials for enhancing the mechanical properties of composites, including HAp-based bio-composites. Researchers have preferred carbonaceous materials with hydroxyapatite due to their inherent biocompatibility and good structural properties. It has been demonstrated that different structures of carbonaceous material can be used to improve the fracture toughness of HAp, as they can easily serve the purpose of being a second phase reinforcement, with the resulting composite still being a biocompatible material. Nanostructured carbonaceous structures, especially those in the form of fibres and sheets, were found to be very effective in increasing the fracture toughness values of HAp. Minor addition of CNTs (3 wt.%) has resulted in a more than 200% increase in fracture toughness of hydroxyapatite-nanorods/CNTs made using spark plasma sintering. This paper presents a current review of the research field of using different carbonaceous materials composited with hydroxyapatite with the intent being to produce high performance biomedically targeted materials.

8.
J Control Release ; 85(1-3): 61-71, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12480312

RESUMO

This paper reports experiments conducted to research, develop and clinically evaluate an injection molded intravaginal insert manufactured from the biodegradable polyester poly(epsilon-caprolactone). The study demonstrated that it is possible to engineer poly(epsilon-caprolactone) into a shape that is well retained, and can be used as a platform for the controlled delivery of progesterone via the vagina of cows. Field evaluation showed that the poly(epsilon-caprolactone) intravaginal inserts containing 10% (w/w) progesterone were at least as effective clinically as the commercially available CIDR intravaginal insert.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Poliésteres/administração & dosagem , Progesterona/administração & dosagem , Tecnologia Farmacêutica/métodos , Administração Intravaginal , Animais , Bovinos , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Poliésteres/farmacocinética , Progesterona/sangue , Progesterona/farmacocinética , Tecnologia Farmacêutica/instrumentação
9.
J Control Release ; 85(1-3): 105-15, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12480316

RESUMO

The purpose of this study was to reengineer a commercially available intravaginal insert containing 1.9 g progesterone (CIDR intravaginal insert) for a 7-day insertion period in cattle. The reengineering process resulted in a reduced initial drug load (1.38 g) and a reduction in the residual drug load following insertion, while at the same time maintaining the biological performance of the insert. The in vitro and in vivo pharmaceutical properties of the commercially available CIDR intravaginal insert were characterized initially to gain a thorough understanding of the factors that affected progesterone release from the insert. The effect of changing a selection of formulation and physical variables of the insert was also investigated (including surface area, drug load, addition of pore forming materials, silicone shore hardness and drug particle size). The knowledge gained from these studies was used to define the characteristics of the reengineered insert which was then manufactured and shown to be bioequivalent and clinically equivalent to the commercially available insert.


Assuntos
Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Progesterona/administração & dosagem , Progesterona/farmacocinética , Administração Intravaginal , Animais , Bovinos , Química Farmacêutica , Feminino , Progesterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...