Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 31(7): 1065-1075, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35243691

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a skin-blistering disease caused by mutations in COL7A1, which encodes type VII collagen (C7). There is no cure for DEB, but previous work has shown potential therapeutic benefit of increased production of even partially functional C7. Genome-wide screens using CRISPR-Cas9 have enabled the identification of genes involved in cancer development, drug resistance and other genetic diseases, suggesting that they could be used to identify drivers of C7 production. A keratinocyte C7 reporter cell line was created and used in a genome-wide CRISPR activation (CRISPRa) screen to identify genes and pathways that increase C7 expression. The CRISPRa screen results were used to develop a targeted drug screen to identify compounds that upregulate C7 expression. The C7_tdTomato cell line was validated as an effective reporter for detection of C7 upregulation. The CRISPRa screen identified DENND4B and TYROBP as top gene hits plus pathways related to calcium uptake and immune signalling in C7 regulation. The targeted drug screen identified several compounds that increase C7 expression in keratinocytes, of which kaempferol, a plant flavonoid, also significantly increased C7 mRNA and protein in DEB patient cells.


Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa Distrófica , Linhagem Celular , Epidermólise Bolhosa Distrófica/tratamento farmacológico , Epidermólise Bolhosa Distrófica/genética , Humanos , Queratinócitos/metabolismo , Mutação
2.
Exp Dermatol ; 30(5): 664-675, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595864

RESUMO

Squamous cell carcinoma (SCC) develops in more than 80% of individuals with the skin blistering disorder recessive dystrophic epidermolysis bullosa (RDEB). In contrast with UV-induced SCC, RDEB-SCC results from skin damage and has a high proliferative and metastatic rate with 5-year survival near zero. Our objective is to determine the mechanisms underlying the increased metastatic tendencies of RDEB-SCC. RDEB-SCC cultured cell lines were treated with RDEB and non-RDEB fibroblast conditioned media and assayed for migration and invasion with and without small molecule inhibitors for TGFß and other downstream signal transduction pathways. TGFß1 secreted by RDEB dermal fibroblasts has been found to induce migration and invasion and to increase expression of epithelial-to-mesenchymal transition markers in an RDEB-SCC line. These effects were reversed upon inhibition of TGFß signalling and its downstream pathways MEK/ERK, P38 kinase and SMAD3. A number of small molecule inhibitors for these pathways are in different phases of various clinical trials and may be applicable to RDEB-SCC patients. Studying the mechanisms of the extreme form RDEB-SCC may inform studies of other types of SCC, as well as lead to better therapies for RDEB patients.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Cutâneas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/patologia
3.
Stem Cells ; 39(7): 897-903, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609408

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, incurable blistering skin disease caused by biallelic mutations in type VII collagen (C7). Advancements in treatment of RDEB have come from harnessing the immunomodulatory potential of mesenchymal stem cells (MSCs). Although human bone marrow-derived MSC (BM-MSC) trials in RDEB demonstrate improvement in clinical severity, the mechanisms of MSC migration to and persistence in injured skin and their contributions to wound healing are not completely understood. A unique subset of MSCs expressing ATP-binding cassette subfamily member 5 (ABCB5) resides in the reticular dermis and exhibits similar immunomodulatory characteristics to BM-MSCs. Our work aimed to test the hypothesis that skin-derived ABCB5+ dermal MSCs (DSCs) possess superior skin homing ability compared to BM-MSCs in immunodeficient NOD-scid IL2rgammanull (NSG) mice. Compared to BM-MSCs, peripherally injected ABCB5+ DSCs demonstrated superior homing and engraftment of wounds. Furthermore, ABCB5+ DSCs vs BM-MSCs cocultured with macrophages induced less anti-inflammatory interleukin-1 receptor antagonist (IL-1RA) production. RNA sequencing of ABCB5+ DSCs compared to BM-MSCs showed unique expression of major histocompatibility complex class II and Homeobox (Hox) genes, specifically HOXA3. Critical to inducing migration of endothelial and epithelial cells for wound repair, increased expression of HOXA3 may explain superior skin homing properties of ABCB5+ DSCs. Further discernment of the immunomodulatory mechanisms among MSC populations could have broader regenerative medicine implications beyond RDEB treatment.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Proteínas de Homeodomínio/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pele/metabolismo
4.
Am Nat ; 189(5): 549-563, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28410019

RESUMO

Selection on floral traits in hermaphroditic plants is determined by both male and female reproductive success. However, predictions regarding floral trait and mating system evolution are often based solely on female fitness. Selection via male fitness has the potential to affect the outcomes of floral evolution. In this study, we used paternity analysis to assess individual selfing rates and selection on floral traits via male and female fitness in an experimental population of Clarkia xantiana where pollen limitation of seed set was strong. We detected selection through both female and male fitness with reinforcing or noninterfering patterns of selection through the two sex functions. For female fitness, selection favored reduced herkogamy and protandry, traits that promote increased autonomous selfing. For male fitness, selection on petal area was disruptive, with higher trait values conferring greater pollinator attraction and outcross siring success and smaller trait values leading to higher selfed siring success. Combining both female and male fitness, selection on petal area and protandry was disruptive because intermediate phenotypes were less successful as both males and females. Finally, functional relationships among male and female fertility components indicated that selfing resulted in seed discounting and pollen discounting. Under these functional relationships, the evolutionarily stable selfing rate can be intermediate or predominantly selfing or outcrossing, depending on the segregating load of deleterious mutations.


Assuntos
Clarkia/genética , Aptidão Genética , Polinização , Seleção Genética , California , Flores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...