Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 120(17): 3697-3708, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310941

RESUMO

Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our results indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs. From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young's modulus of axon experiences a linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young's modulus of axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.


Assuntos
Axônios , Microtúbulos , Citoesqueleto , Módulo de Elasticidade , Elasticidade , Proteínas tau
2.
Bioengineering (Basel) ; 8(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067153

RESUMO

Patients whose lungs are compromised due to various respiratory health concerns require mechanical ventilation for support in breathing. Different mechanical ventilation settings are selected depending on the patient's lung condition, and the selection of these parameters depends on the observed patient response and experience of the clinicians involved. To support this decision-making process for clinicians, good prediction models are always beneficial in improving the setting accuracy, reducing treatment error, and quickly weaning patients off the ventilation support. In this study, we developed a machine learning model for estimation of the mechanical ventilation parameters for lung health. The model is based on inverse mapping of artificial neural networks with the Graded Particle Swarm Optimizer. In this new variant, we introduced grouping and hierarchy in the swarm in addition to the general rules of particle swarm optimization to further improve its prediction performance of the mechanical ventilation parameters. The machine learning model was trained and tested using clinical data from canine and feline patients at the University of Georgia College of Veterinary Medicine. Our model successfully generated a range of parameter values for the mechanical ventilation applied on test data, with the average prediction values over multiple trials close to the target values. Overall, the developed machine learning model should be able to predict the mechanical ventilation settings for various respiratory conditions for patient's survival once the relevant data are available.

3.
Neural Regen Res ; 16(2): 338-344, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32859794

RESUMO

Traumatic brain injury (TBI) at a young age can lead to the development of long-term functional impairments. Severity of injury is well demonstrated to have a strong influence on the extent of functional impairments; however, identification of specific magnetic resonance imaging (MRI) biomarkers that are most reflective of injury severity and functional prognosis remain elusive. Therefore, the objective of this study was to utilize advanced statistical approaches to identify clinically relevant MRI biomarkers and predict functional outcomes using MRI metrics in a translational large animal piglet TBI model. TBI was induced via controlled cortical impact and multiparametric MRI was performed at 24 hours and 12 weeks post-TBI using T1-weighted, T2-weighted, T2-weighted fluid attenuated inversion recovery, diffusion-weighted imaging, and diffusion tensor imaging. Changes in spatiotemporal gait parameters were also assessed using an automated gait mat at 24 hours and 12 weeks post-TBI. Principal component analysis was performed to determine the MRI metrics and spatiotemporal gait parameters that explain the largest sources of variation within the datasets. We found that linear combinations of lesion size and midline shift acquired using T2-weighted imaging explained most of the variability of the data at both 24 hours and 12 weeks post-TBI. In addition, linear combinations of velocity, cadence, and stride length were found to explain most of the gait data variability at 24 hours and 12 weeks post-TBI. Linear regression analysis was performed to determine if MRI metrics are predictive of changes in gait. We found that both lesion size and midline shift are significantly correlated with decreases in stride and step length. These results from this study provide an important first step at identifying relevant MRI and functional biomarkers that are predictive of functional outcomes in a clinically relevant piglet TBI model. This study was approved by the University of Georgia Institutional Animal Care and Use Committee (AUP: A2015 11-001) on December 22, 2015.

4.
Biomimetics (Basel) ; 4(4)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635308

RESUMO

Microtubules (MTs) are highly dynamic polymers distributed in the cytoplasm of a biological cell. Alpha and beta globular proteins constituting the heterodimer building blocks combine to form these tubules through polymerization, controlled by the concentration of Guanosine-triphosphate (GTPs) and other Microtubule Associated Proteins (MAPs). MTs play a crucial role in many intracellular processes, predominantly in mitosis, organelle transport and cell locomotion. Current research in this area is focused on understanding the exclusive behaviors of self-organization and their association with different MAPs through organized laboratory experiments. However, the intriguing intelligence behind these tiny machines resulting in complex self-organizing structures is mostly unexplored. In this study, we propose a novel swarm engineering framework in modeling rules for these systems, by combining the principles of design with swarm intelligence. The proposed framework was simulated on a game engine and these simulations demonstrated self-organization of rings and protofilaments in MTs. Analytics from these simulations assisted in understanding the influence of GTPs on protofilament formation. Also, results showed that the population density of GTPs rather than their bonding probabilities played a crucial role in polymerization in forming microtubule substructures.

5.
J Chem Theory Comput ; 15(11): 6382-6392, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525923

RESUMO

Understanding and controlling the interaction between nanoparticles and cell nuclei is critical to the development of the biomedical applications such as gene delivery, cellular imaging, and tumor therapy. Recent years have witnessed growing evidence that the size, shape, and the grafting density of the karyopherins ligands of nanoparticles provide a significant influence on the uptake mechanism of nanoparticles into cells; however, there is a lack of investigation into how these physical factors play a role in cellular nuclear uptake and how the nanoparticle enters the nucleus. Here, we build a computational framework to parametrically evaluate the effects of the size, shape, and the grafting density of the karyopherins ligands of designed nanoparticles on their transport through the nuclear pore complex of a cell nucleus so as to provide a novel scheme for nanoparticle design and precise nucleus-targeted therapy. Simulation results indicate that smaller spherical nanoparticles need to overcome a lower energy barrier than larger ones and also that nanoparticles with large grafting density exhibited greatly altered dynamics during the active transport process. Moreover, we observed that the shape and morphology of nanoparticles unambiguously determined their nuclear uptake pathways. Nuclear uptake is determined by an intricate interplay between physicochemical particle properties and nucleus properties. Our work provides a systematic understanding for nuclear uptake of nanoparticles, viruses, and bacteria and opens up a controllable design strategy for manipulating nanoparticle-nucleus interaction, with numerous applications in medicine, bioimaging, and biosensing.


Assuntos
Modelos Moleculares , Nanopartículas/química , Poro Nuclear/química , Transporte Biológico , Nanopartículas/metabolismo , Poro Nuclear/metabolismo , Tamanho da Partícula
6.
Bioengineering (Basel) ; 6(2)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242607

RESUMO

Inflammation is a process driven by underlying cell-cell communication and many other factors. In this study, a model of cell-cell communications was proposed to study factors driving the inflammation time course. Analyses of inflammations that are driven by the combined effects of strain (mechanical stimuli) and/or pathogens are considered in this paper. An agent-based model was employed to simulate inflammation where macrophages and fibroblasts influence each other through cell signaling cytokines that diffuse and spread in the tissue space. The communication network of macrophages and fibroblasts was then inferred and its network model (termed TE network) was generated and analyzed. The results suggest that factors driving inflammation time course can be discriminated by the characteristics of TE networks. Inflammation driven only by pathogens has certain TE network characteristics indicating slower and lower information exchange among cells. Multiple stimuli can help to maintain sufficient information exchange among cells, which is beneficial for inflammation resolution. The TE network captures the unfolding of the innate immune system over time, and the history of pathogens invasion. The resulting network leads to an improved understanding of the resilience of the system to future pathogen invasion.

7.
Phys Chem Chem Phys ; 21(4): 1884-1894, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30632560

RESUMO

The popularity of phosphorene (known as monolayer black phosphorus) in electronic devices relies on not only its superior electrical properties, but also its mechanical stability beyond the nanoscale. However, the mechanical performance of phosphorene beyond the nanoscale remains poorly explored owing to the spatiotemporal limitation of experimental observations, first-principles calculations, and atomistic simulations. To overcome this limitation, here a coarse-grained molecular dynamics (CG-MD) model is developed via a strain energy conservation approach to offer a new computational tool for the investigation of the mechanical properties of phosphorene beyond the nanoscale. The mechanical properties of a single phosphorene sheet are first characterized by all-atom molecular dynamics (AA-MD) simulations, followed by a force-field parameter optimization of the CG-MD model by matching these mechanical properties from AA-MD simulations. The intrinsic out-of-plane puckered feature is conserved in our CG-MD model, rendering mechanical anisotropy and heterogeneity in both the in-plane and out-of-plane directions preserved. The results indicate that our coarse-grained model is able to accurately capture the anisotropic in-plane mechanical performance of phosphorene and quantitatively reproduce Young's modulus, ultimate strength, and fracture strain under various environmental temperatures. Our CG-MD model can also capture the anisotropic out-of-plane bending stiffness of phosphorene. We demonstrate the applicability of our model in capturing the fracture toughness of phosphorene in both the armchair and zigzag directions by comparison with the results from AA-MD simulations. This CG-MD model proposed here offers greater capability to perform mechanical mesoscale simulations for phosphorene-based systems, allowing for a deeper understanding of the mechanical properties of phosphorene beyond the nanoscale, and the potential transferability of the developed force-field can help design hybrid phosphorene devices and structures.

8.
Biosystems ; 176: 6-12, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528518

RESUMO

Self-assembly is a ubiquitous, naturally occurring, robust process in many living organisms. Microtubule (MT), a self-organization system assemble itself into functional units by attaching to cellular structures. Modeling microtubule self-organization is of interest as microtubule forms a network of protein filaments that is critical to many processes in eukaryotic cells. In this paper, we propose an optimization framework that considers MT self-assembly starting from alpha (α) and beta (ß) tubulins as basic building blocks in the self-organization of MT. Using this framework we present separate analysis of MT self-assembly strength by considering two aspects of MT self-assembly. First, the affinity factor distribution between neighboring tubulins of an MT is considered for the analysis. Second, this paper also present an analysis of structural stability considering geometric parameter distribution of tubulins within an MT. We present separate algorithms for the analysis in detail. The proposed models show convergence and robustness under random initialization and thus justify the effectiveness of the proposed convergence criteria for stability analysis of MT self-organization. The proposed algorithms show the ability to emulate MT self-assembly from random initial configurations.


Assuntos
Citoesqueleto/química , Citoesqueleto/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Humanos , Modelos Biológicos , Termodinâmica
9.
Inflamm Res ; 68(1): 59-74, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30306206

RESUMO

BACKGROUND: Inflammation in the lung is the body's natural response to injury. It acts to remove harmful stimuli such as pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF). FINDINGS: In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-ß (TGF-ß), which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator (CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exaggerated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases. CONCLUSION: The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the influence of aging on airways' inflammation mechanism. The main goal of this review is to encourage research collaborations between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that control inflammation in different airway diseases.


Assuntos
Doenças Respiratórias/imunologia , Envelhecimento/imunologia , Animais , Humanos , Inflamação/imunologia , Pulmão/imunologia , Modelos Biológicos
10.
J Gerontol A Biol Sci Med Sci ; 74(2): 139-146, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29746613

RESUMO

Alveolar sacs are primarily responsible for gas exchange in the human respiratory system and lose their functionality with aging. Three-dimensional (3D) models of young and old human alveolar sacs were constructed and fluid-solid interaction was employed to investigate the contribution of age-related changes to decline in alveolar sacs function under mechanical ventilation (MV). Simulation results illustrated that compliance and pressure reduced in the alveolar sacs of the elderly adults, and they have to work harder to breathe. Morphological changes were found to be mainly responsible for the decline in alveolar sacs function. Influence of individual differences on the alveolar sacs function was negligible and 95% confidence intervals for compliance and work of breathing (WOB) using measures from different individuals also support this finding. Moreover, higher mortality risk was recorded for elderly adults who undergo MV. Specifically, ventilator devices setting has been identified as a potential parameter for compromising respiratory function in the elderly adults. Volume-controlled ventilation applied less pressure, whereas, pressure-controlled ventilation resulted in higher compliance in the alveolar sacs and decreased WOB. Sensitivity of alveolar sacs to ventilator setting under the volume-controlled mode illustrated that increasing breathing frequency and decreasing the ratio of inhalation to exhalation times and TV caused an increase in alveolar sacs expansion and compliance in older patients. Results from this study can help clinicians to develop individualized and effective ventilator protocols and to improve respiratory function in the elderly adults.


Assuntos
Envelhecimento , Imageamento Tridimensional/métodos , Alvéolos Pulmonares/diagnóstico por imagem , Respiração Artificial , Insuficiência Respiratória/terapia , Humanos , Pressão , Alvéolos Pulmonares/fisiopatologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/fisiopatologia
11.
Prog Adv Comput Intell Eng ; 563: 197-207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29745374

RESUMO

Traumatic brain injury (TBI) is a major problem affecting millions of people around the world every year. Usually, TBI results from any direct or indirect physical impact, sudden jerks, or blunt impacts to the head, leading to damage to the brain. Current research in TBI is focused on analyzing the biological and behavioral states of patients prone to such injuries. This paper presents a technique applied on MRI images in estimation of lesion volumes in brain tissues of traumatic brain-injured laboratory rats that were subjected to controlled cortical impacts. The lesion region in the brain tissue is estimated using segmentation of the brain, diffusion, and the damage regions. After the segmentation, the area of the damaged portion is estimated across each slice of MRI and the combined volume of damage is estimated through 3D reconstruction.

12.
IEEE J Transl Eng Health Med ; 6: 1800307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541555

RESUMO

Ventilation-induced lung injury is a common problem faced by patients with respiratory problems who require mechanical ventilation (MV). This injury may lead to a greater chance of developing or exacerbating the acute respiratory distress syndrome which further complicates the therapeutic use of MV. The chain of events begins with the MV initiating an immune response that leads to inflammation induced tissue material alteration (stiffening) and eventually the loss of lung resistance. It is clear from this sequence of events that the phenomenon of ventilation induced injury is multi-scale by nature and, hence, requires holistic analysis involving simulations and informatics. An effective approach to this problem is to break it down into several major physical models. Each physical model is developed separately and can be seen as a component in a larger system that comprises the scale of the problem being investigated. In this paper, a multi-scale system consisting of breathing mechanics, tissue deformation, and cellular mechanics models is developed to assess the immune response. To demonstrate the potential of the model, a fluid-solid model is employed for breathing mechanics, a plane-strain elasticity model is applied to assess tissue deformation, and a cellular automata (CA) model is developed to account for immune response. A case study of three lower airways is presented. The CA model shows that this increased the immune response by five times, which correlates with alteration in the tissue microstructure. This alteration in turn is reflected in the material constant value obtained in the tissue mechanics model. However, the changes in strain rates in the airways after inflammation (and hence, lung compliance) were not as significant as the rates of change in immune response. Finally, results from the fluid-solid model demonstrate its potential for airflow characterization caused by tissue deformation that could lead to disease identification.

13.
Phys Chem Chem Phys ; 20(13): 8668-8675, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537000

RESUMO

Phosphorene, also known as monolayer black phosphorous, has been widely used in electronic devices due to its superior electrical properties. However, its relatively low Young's modulus, low fracture strength and susceptibility to structural failure has limited its application in nano devices. Therefore, in order to design more mechanically reliable devices that utilize phosphorene, it is necessary to explore the mechanical properties of polycrystalline phosphorene. Here molecular dynamics simulations are performed to study the effect of grain size on the mechanical performance of polycrystalline phosphorene sheets. Unlike other two-dimension materials with planar crystalline structure, polycrystalline phosphorene sheets are almost linear elastic, resulting from its high bending stiffness due to its intrinsic buckled crystalline structure. Moreover, the percentage increase of stiffness for polycrystalline phosphorene associated with the increase of grain size from 2 to 12 nm is only 15.9%, much smaller than that for other two-dimension materials with planar crystalline structure. This insensitivity could be attributed to the small difference between the elastic modulus of the crystalline phase and amorphous phase of polycrystalline phosphorene. In addition, the strength deduction obeys well a logarithm relation of grain size, well explained by the dislocation pile-up theory analogous to that of polycrystalline graphene. Overall, our findings provide a better understanding of mechanical properties of polycrystalline phosphorene and establish a guideline for manufacturing and designing novel phosphorene-based nano devices and nano structures.

14.
IEEE J Biomed Health Inform ; 22(3): 935-941, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28212103

RESUMO

Respiratory diseases such as asthma and acute respiratory distress syndrome as well as acute lung injury involve inflammation at the cellular level. The inflammation process is very complex and is characterized by the emergence of cytokines along with other changes in cellular processes. Due to the complexity of the various constituents that makes up the inflammation dynamics, it is necessary to develop models that can complement experiments to fully understand inflammatory diseases. In this study, we developed a discrete informatics model based on cellular automata (CA) approach to investigate the influence of elastic field (stretch/strain) on the dynamics of inflammation and account for probabilistic adaptation based on statistical interpretation of existing experimental data. Our simulation model investigated the effects of low, medium, and high strain conditions on inflammation dynamics. Results suggest that the model is able to indicate the threshold of innate healing of tissue as a response to strain experienced by the tissue. When strain is under the threshold, the tissue is still capable of adapting its structure to heal the damaged part. However, there exists a strain threshold where healing capability breaks down. The results obtained demonstrate that the developed discrete informatics based CA model is capable of modeling and giving insights into inflammation dynamics parameters under various mechanical strain/stretch environments.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Modelos Biológicos , Pneumonia/fisiopatologia , Fenômenos Biomecânicos , Simulação por Computador , Elasticidade , Humanos , Regeneração/fisiologia
15.
Integr Biol (Camb) ; 9(12): 925-933, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29114690

RESUMO

Energetic interactions inside αß-tubulin dimers of a microtubule (MT) with atomic resolutions are of importance in determining the mechanical properties and structural stability of the MT as well as designing self-assembled functional structures from it. Here, we carry out several comprehensive atomistic simulations to investigate the interaction properties within αß-tubulin dimers and effect of residue mutations on the intra-dimer tubulin-tubulin (IDTT) binding strength. Results indicate that the force-displacement responses of the dimer could be roughly divided into three stages involving increasing, decreasing, and fluctuating forces. Energetic analysis shows that electrostatic interactions dominate the IDTT binding strength. Further per-residue energetic analysis shows that the major part of the interface interaction energy (approximately 72% for α-tubulin and 62% for ß-tubulin) comes from amino acid residues with net charges, namely arginine (ARG), lysine (LYS), glutamic acid (GLU), aspartic acid (ASP). Residue mutations are completed for ARG105 on α-tubulin and ASP251 on ß-tubulin to study the effect of mutations on the IDTT binding strength. Results indicate that stiffness, rupture force, and interface interaction energy of αß-tubulin dimer can be improved by up to 28%, 13% and 28%, respectively. Overall, our results provide a thorough atomistic understanding of the IDTT binding strength within αß-tubulin heterodimers and help pave the way for eventually designing and controlling the self-assembled functional structures from MTs.


Assuntos
Microtúbulos/química , Mutação , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Arginina/química , Ácido Aspártico/química , Sítios de Ligação , Simulação por Computador , Dimerização , Ácido Glutâmico/química , Humanos , Lisina/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Eletricidade Estática , Estresse Mecânico , Resistência à Tração
16.
Med Sci (Basel) ; 5(4)2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29099037

RESUMO

Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.

17.
Bioengineering (Basel) ; 4(2)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28952516

RESUMO

In this study, we developed a microdevice concept for drug/fluidic transport taking an inspiration from supramolecular motor found in biological cells. Specifically, idealized multi-functional design geometry (nozzle/diffuser/nozzle) was developed for (i) fluidic/particle transport; (ii) particle separation; and (iii) droplet generation. Several design simulations were conducted to demonstrate the working principles of the multi-functional device. The design simulations illustrate that the proposed design concept is feasible for multi-functionality. However, further experimentation and optimization studies are needed to fully evaluate the multifunctional device concept for multiple applications.

18.
PLoS One ; 12(8): e0183654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28846719

RESUMO

BACKGROUND AND OBJECTIVE: The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. MATERIALS AND METHODS: Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. FINDINGS: The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. CONCLUSION: Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.


Assuntos
Envelhecimento/fisiologia , Bronquíolos/fisiologia , Pulmão/fisiologia , Idoso , Idoso de 80 Anos ou mais , Bronquíolos/anatomia & histologia , Humanos , Pulmão/anatomia & histologia , Pessoa de Meia-Idade , Modelos Biológicos , Testes de Função Respiratória
19.
Phys Chem Chem Phys ; 19(20): 13083-13092, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28484774

RESUMO

The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent -0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties via tunable overlap distance and flake number in phosphorene layers.

20.
Biomech Model Mechanobiol ; 16(4): 1103-1118, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28194537

RESUMO

Inflammation is the body's attempt at self-protection to remove harmful stimuli, including damaged cells, irritants, or pathogens and begin the healing process. In this study, strain-induced inflammation in pulmonary alveolar tissue under high tidal volume is investigated through a combination of an inflammation model and fluid structure interaction (FSI) analysis. A realistic three-dimensional organ model for alveolar sacs is built, and FSI is employed to evaluate strain distribution in alveolar tissue for different tidal volume (TV) values under the mechanical ventilation (MV) condition. The alveolar tissue is treated as a hyperelastic solid and provides the environment for the tissue constituents. The influence of different strain distributions resulting from different tidal volumes is investigated. It is observed that strain is highly distributed in the inlet area. In addition, strain versus time curves in different locations through the alveolar model reveals that middle layers in the alveolar region would undergo higher levels of strain during breathing under the MV condition. Three different types of strain distributions in the alveolar region from the FSI simulation are transferred to the CA model to study population dynamics of cell constituents under MV for different TVs; 200, 500 and 1000 mL, respectively. The CA model results suggests that strain distribution plays a significant role in population dynamics. An interplay between strain magnitude and distribution appears to influence healing capability. Results suggest that increasing TV leads to an exponential rise in tissue damage by inflammation.


Assuntos
Inflamação/etiologia , Modelos Biológicos , Respiração Artificial/efeitos adversos , Humanos , Alvéolos Pulmonares/patologia , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA