Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(12): 100654, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38065095

RESUMO

Current treatment selection for acute myeloid leukemia (AML) patients depends on risk stratification based on cytogenetic and genomic markers. However, the forecasting accuracy of treatment response remains modest, with most patients receiving intensive chemotherapy. Recently, ex vivo drug screening has gained traction in personalized treatment selection and as a tool for mapping patient groups based on relevant cancer dependencies. Here, we systematically evaluated the use of drug sensitivity profiling for predicting patient survival and clinical response to chemotherapy in a cohort of AML patients. We compared computational methodologies for scoring drug efficacy and characterized tools to counter noise and batch-related confounders pervasive in high-throughput drug testing. We show that ex vivo drug sensitivity profiling is a robust and versatile approach to patient prognostics that comprehensively maps functional signatures of treatment response and disease progression. In conclusion, ex vivo drug profiling can assess risk for individual AML patients and may guide clinical decision-making.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico
3.
Nat Commun ; 14(1): 115, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611026

RESUMO

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Assuntos
Leucemia Mieloide Aguda , Medicina de Precisão , Humanos , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia
4.
J Biol Chem ; 296: 100179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303632

RESUMO

Breakpoint Cluster Region-Abelson kinase (BCR-Abl) is a driver oncogene that causes chronic myeloid leukemia and a subset of acute lymphoid leukemias. Although tyrosine kinase inhibitors provide an effective treatment for these diseases, they generally do not kill leukemic stem cells (LSCs), the cancer-initiating cells that compete with normal hematopoietic stem cells for the bone marrow niche. New strategies to target cancers driven by BCR-Abl are therefore urgently needed. We performed a small molecule screen based on competition between isogenic untransformed cells and BCR-Abl-transformed cells and identified several compounds that selectively impair the fitness of BCR-Abl-transformed cells. Interestingly, systems-level analysis of one of these novel compounds, DJ34, revealed that it induced depletion of c-Myc and activation of p53. DJ34-mediated c-Myc depletion occurred in a wide range of tumor cell types, including lymphoma, lung, glioblastoma, breast cancer, and several forms of leukemia, with primary LSCs being particularly sensitive to DJ34. Further analyses revealed that DJ34 interferes with c-Myc synthesis at the level of transcription, and we provide data showing that DJ34 is a DNA intercalator and topoisomerase II inhibitor. Physiologically, DJ34 induced apoptosis, cell cycle arrest, and cell differentiation. Taken together, we have identified a novel compound that dually targets c-Myc and p53 in a wide variety of cancers, and with particularly strong activity against LSCs.


Assuntos
Antineoplásicos/farmacologia , Competição entre as Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/química
6.
Haematologica ; Online ahead of print2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748445

RESUMO

Internal tandem duplications in the tyrosine kinase receptor FLT3 (FLT3-ITD) are among the most common lesions in acute myeloid leukemia and there exists a need for new forms of treatment. Using ex vivo drug sensitivity screening, we found that FLT3-ITD+ patient cells are particularly sensitive to HSP90 inhibitors. While it is well known that HSP90 is important for FLT3-ITD stability, we found that HSP90 family members play a much more complex role in FLT3-ITD signaling than previously appreciated. First, we found that FLT3-ITD activates the unfolded protein response, leading to increased expression of GRP94/HSP90B1. This results in activation of a nefarious feedback loop, in which GRP94 rewires FLT3-ITD signaling by binding and retaining FLT3-ITD in the endoplasmic reticulum, leading to aberrant activation of downstream signaling pathways and further inducing the unfolded protein response. Second, HSP90 family proteins protect FLT3-ITD+ acute myeloid leukemia cells against apoptosis by alleviating proteotoxic stress, and treatment with HSP90 inhibitors results in proteotoxic overload that triggers unfolded protein response-induced apoptosis. Importantly, leukemic stem cells are strongly dependent upon HSP90 for their survival, and the HSP90 inhibitor ganetespib causes leukemic stem cell exhaustion in patient-derived mouse xenograft models. Taken together, our study reveals a molecular basis for HSP90 addiction of FLT3-ITD+ acute myeloid leukemia cells and provides a rationale for including HSP90 inhibitors in the treatment regime for FLT3-ITD+ acute myeloid leukemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...