Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679398

RESUMO

This article presents a novel and selective electrochemical bioassay with antibody and laccase for the determination of free thyroid hormone (free triiodothyronine, fT3). The biosensor was based on a glassy carbon electrode modified with a Fe3O4@graphene nanocomposite with semiconducting properties, an antibody (anti-PDIA3) with high affinity for fT3, and laccase, which was responsible for catalyzing the redox reaction of fT3. The electrode modification procedure was investigated using a cyclic voltammetry technique, based on the response of the peak current after modifications. All characteristic working parameters of the developed biosensor were analyzed using differential pulse voltammetry. Obtained experimental results showed that the biosensor revealed a sensitive response to fT3 in a concentration range of 10-200 µM, a detection limit equal to 27 nM, and a limit of quantification equal to 45.9 nM. Additionally, the constructed biosensor was selective towards fT3, even in the presence of interference substances: ascorbic acid, tyrosine, and levothyroxine, and was applied for the analysis of fT3 in synthetic serum samples with excellent recovery results. The designed biosensor also exhibited good stability and can find application in future medical diagnostics.


Assuntos
Técnicas Biossensoriais , Grafite , Nanocompostos , Grafite/química , Lacase/química , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Técnicas Biossensoriais/métodos , Hormônios Tireóideos , Eletrodos , Limite de Detecção
2.
Bioorg Chem ; 99: 103773, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217373

RESUMO

Corn processing generates thousands of tons of cob husks, which still contains many valuable elements. To make the most of these wastes, they are applied as substrates for biotransformation's procedures. This approach allowed converting or releasing, the elements deposited in the plant material and obtaining valuable products. Thus bioconversion of corn cob husks (CCH) using a fungus of the Fusarium culmorum genus resulted in obtaining silica nanoparticles of defined size and morphology. SEM analysis excluded their presence on the surface of the substrate. FTIR confirmed the presence of siloxane bonds and O-Si-O bonds in post-biotransformation fluid. Using the Heteropoly Blue Method, it was checked that the highest concentration of silica during 16-day biotransformation falls on the 7th day of the process, in which both the substrate sterilization and the process of the biocatalyst starvation were of key importance. Using the STEM and EDX analysis, it was proved that the obtained nanoparticles with a spherical form are structured and their dimensions are ~40 and ~70 nm. ICP-OES proved that the overall process efficiency was 47%. Such nanoparticles can be successfully used in the medical industry.


Assuntos
Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Zea mays/química , Biotransformação , Fusarium/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Propriedades de Superfície , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...