Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35954594

RESUMO

Hand sanitizers are used as an alternative to hand washing to reduce the number of viable microorganisms when soap and water are not readily available. This study aimed to investigate the anti-bacterial effectiveness of commercially available hand sanitizers and those commonly used in healthcare and community settings. A mapping exercise was done to select and procure different hand sanitizers (n = 18) from retailers. Five microorganisms implicated in hospital-acquired infections were selected and tested against each hand sanitizer: Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Twenty-one volunteers were recruited to do a handprint before and after applying the hand sanitizer. Only four out of eighteen hand sanitizers (22%) were effective against all tested bacterial species, and an equal number (22%) were completely ineffective. Seven hand sanitizers with a label claim of 99.99% were only effective against E. coli. Only five hand sanitizers (27%) effectively reduced bacteria on participants' hands. This study showed that only a fifth of hand sanitizers were effective against selected microorganisms. The findings raise a concern about the effectiveness of hand sanitizers and their role in infection, prevention, and control if not well regulated.


Assuntos
Desinfetantes , Higienizadores de Mão , Bactérias , Desinfetantes/farmacologia , Escherichia coli , Mãos , Desinfecção das Mãos , Higienizadores de Mão/farmacologia , Humanos , Sabões , África do Sul
2.
Microb Pathog ; 144: 104180, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240767

RESUMO

In bacterial cells, the cytoplasmic membrane forms a barrier between the environment and the cell's cytoplasm. This barrier regulates which substances (and the amount) that leave and enter the cell, to maintain homeostasis between the cytoplasm and the external environment. One of the mechanisms employed to maintain structure and functionality during exposure to environmental stress is adaptation of the membrane lipids. The aim of this study was to investigate membrane alteration as a possible survival method of non-acid adapted enteropathogenic Escherichia coli (E. coli) (EPEC) (as could be found in contaminated water or unprocessed food) through simulated gastric fluid (SGF). Enteropathogenic E. coli was grown in nutrient-rich media and then exposed to SGF of various pH (1.5, 2.5, 3.5, or 4.5) for 180 min. Flow cytometry was utilised to examine membrane integrity; and morphological changes were investigated using transmission electron microscopy (TEM). Gas chromatography-mass spectrometry (GC-MS) was used to assess the membrane lipid composition. The results of this study showed that SGF treatment caused membrane damage, as well as cell wall thickening and irregular plasma membranes. The morphological changes were accompanied by membrane lipid changes indicative of decreased membrane fluidity and increased rigidity. The findings suggest that non-acid adapted EPEC can perceive pH change in the environment and adapt accordingly.


Assuntos
Adaptação Fisiológica/fisiologia , Membrana Externa Bacteriana/fisiologia , Escherichia coli Enteropatogênica/metabolismo , Ácido Gástrico/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/metabolismo , Estresse Fisiológico
3.
Microb Pathog ; 128: 396-404, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30660737

RESUMO

BACKGROUND: Gastric fluid pH serves an important function as an ecological filter to kill unwanted microbial taxa that would otherwise colonise the intestines, thereby shaping the diversity and composition of microbial communities found in the gut. The typical American-based diet causes the gastric pH to increase to pH 4 to 5, and it takes ∼2 h to return to pH 1.5 (normal). This window of increased gastric pH may allow potential pathogens to negotiate the hostile environment of the stomach. Another factor to consider is that in developing countries many people experience hypochlorhydria related to malnutrition and various gastric diseases. Enteropathogenic E. coli (EPEC) is a leading cause of infantile diarrhoea and has a high incidence in the developing world. The aim of this study was to assess the survival and recovery of non-acid adapted EPEC exposed to simulated gastric fluid (SGF) over a period of 180 min. RESULTS: EPEC were grown in nutrient-rich medium and acid challenged in SGF at pH 1.5, 2.5, 3.5 and 4.5. Culturability was evaluated using a standard plate count method, and metabolic viability was assessed via cellular energy (adenosine triphosphate [ATP] assay) and respiratory activity (3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide [XTT] assay), and recovery and proliferation by means of optical density in liquid cultures. Sampling was performed at 0, 30, 60, 120, and 180 min post-SGF exposure. The results of this study showed that EPEC is remarkably acid resistant and was able to survive a simulated gastric environment for up to 3 h (180 min) at various pH (1.5, 2.5, 3.5, and 4.5). EPEC was culturable at all pH (1.5, 2.5, 3.5 and 4.5) at the higher inoculum size of 5.4-7.1 × 106 CFU/ml, and at all pH except pH 1.5 at the lower inoculums of 5.4-7.1 × 103 CFU/ml or 5.4-7.1 × 101 CFU/ml. The organism remained metabolically viable at pH 1.5, 2.5, 3.5, and 4.5 and was able to recover and proliferate once placed in a neutral, nutrient-rich environment. CONCLUSION: In this study, EPEC demonstrated remarkable acid resistance and recovery at low pH without prior acid adaptation, which could prove to be problematic even in healthy people. In individuals with decreased gastric acidity, there is a higher probability of pathogen colonization and a resulting change in the gut microbiome. The results highlight the potential increase of food- and waterborne diseases in persons with compromised gastric function, or who are malnourished or immunocompromised. The data herein may possibly help in calculating more precisely the risk associated with consuming bacterial contaminated food and water in these individuals.


Assuntos
Adaptação Fisiológica/fisiologia , Farmacorresistência Bacteriana/fisiologia , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/fisiologia , Ácido Gástrico , Viabilidade Microbiana/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos , Contagem de Colônia Microbiana , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Estômago/microbiologia , Estresse Fisiológico , Fatores de Tempo
4.
Afr J Lab Med ; 5(1): 368, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28879110

RESUMO

BACKGROUND: The persistence and pathogenicity of pathogenic bacteria are dependent on the ability of the species to survive in adverse conditions. During the infectious process, the organism may need to pass through certain hostile anatomical sites, such as the stomach. Under various environmental stresses, many bacteria enter into the viable but non-culturable (VBNC) state, where they are 'alive' or metabolically active, but will not grow on conventional media. Escherichia coli bacteria encounter several diverse stress factors during their growth, survival and infection and thus may enter into the VBNC state. OBJECTIVES: This review discusses various general aspects of the VBNC state, the mechanisms and possible public health impact of indicator and pathogenic E. coli entering into the VBNC state. METHOD: A literature review was conducted to ascertain the possible impact of E. coli entering into the VBNC state. RESULTS: Escherichia coli enter into the VBNC state by means of several induction mechanisms. Various authors have found that E. coli can be resuscitated post-VBNC. Certain strains of pathogenic E. coli are still able to produce toxins in the VBNC state, whilst others are avirulent during the VBNC state but are able to regain virulence after resuscitation. CONCLUSION: Pathogenic and indicator E. coli entering into the VBNC state could have an adverse effect on public health if conventional detection methods are used, where the number of viable cells could be underestimated and the VBNC cells still produce toxins or could, at any time, be resuscitated and become virulent again.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...