Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(4): 953-964, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30565172

RESUMO

The chemical properties accounting for the operation of a valuable matrix used in matrix-assisted laser desorption ionization (MALDI) to perform mass spectrometry imaging (MSI), namely 3-(4,5-bis(dimethylamino)napthalen-1-yl)furan-2,5-dione (4-maleicanhydridoproton sponge, MAPS), have been elucidated also by comparison with the parent molecule 1,8-bis(dimethylamino) naphthalene (so-called proton sponge, PS). Both compounds present the bis(dimethylamino) groups, apt to efficiently trap a proton imparting positive charge. Only MAPS, though, owns the maleicanhydrido function acting as electrophile and yielding covalently bound adducts with a variety of analytes. In this way, MAPS performs as "carrier" for the analyte (A) of interest, at the same time minimizing the presence of useless, background ions. The covalent character of the adducts, [MAPS+H + A]+, is testified by their collision-induced dissociation pattern, quite distinct from the one displayed by [PS + H]+, while PS does not form any [PS + H + A]+, thus confirming the key role of the maleicanhydrido functionality of MAPS. Vibrational spectroscopy of [MAPS+H + A]+ adducts (A = H2O, NH3) provided further structural evidence. The presence of a mobile proton on A was found to be a requisite for adduct formation by electrospray ionization of acetonitrile solutions, pointing to a possible role of MAPS in discriminating competing analytes based on molecular features. The performance of MAPS has been verified in MALDI-MSI of Atropa belladonna berries, exploiting MAPS binding to atropine. Graphical abstract ᅟ.


Assuntos
Aldeídos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Atropa belladonna/química , Atropina/análise , Frutas/química , Estrutura Molecular , Espectrofotometria Infravermelho
2.
Biochim Biophys Acta Mol Cell Res ; 1865(8): 1025-1033, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29630899

RESUMO

TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2-/- cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.


Assuntos
Apoptose , Quinase I-kappa B/imunologia , NF-kappa B/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Quinase I-kappa B/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...