Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Tuberculosis (Edinb) ; 147: 102399, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37648595

RESUMO

Tuberculosis is a leading cause of infectious death worldwide, with almost a fourth of the world's population latently infected with its causative agent, Mycobacterium tuberculosis. Current diagnostic methods are insufficient to differentiate between healthy and latently infected populations. Here, we used a machine learning approach to analyze publicly available proteomic data from saliva and serum in Ethiopia's healthy, latent TB (LTBI) and active TB (ATBI) people. Our analysis discovered a profile of six proteins, Mast Cell Expressed Membrane Protein-1, Hemopexin, Lamin A/C, Small Proline Rich Protein 2F, Immunoglobulin Kappa Variable 4-1, and Voltage Dependent Anion Channel 2 that can precisely differentiate between the healthy and latently infected populations. This data suggests that a combination of six host proteins can serve as accurate biomarkers to diagnose latent infection. This is important for populations living in high-risk areas as it may help in the surveillance and prevention of severe disease.

2.
Infect Drug Resist ; 14: 4833-4847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819737

RESUMO

PURPOSE: This study was conducted to investigate the drug resistance mutations and genetic diversity of HIV-1 in ART experienced patients in South Omo, Ethiopia. PATIENTS AND METHODS: A cross-sectional study conducted on 253 adult patients attending ART clinics for ≥6 months in South Omo. Samples with VL ≥1000 copies/mL were considered as virological failures (VF) and their reverse transcriptase gene codons 90-234 were sequenced using Illumina MiSeq. MinVar was used for the identification of the subtypes and drug resistance mutations. Phylogenetic tree was constructed by neighbor-joining method using the maximum likelihood model. RESULTS: The median duration of ART was 51 months and 18.6% (47/253) of the patients exhibited VF. Of 47 viraemic patients, the genome of 41 were sequenced and subtype C was dominant (87.8%) followed by recombinant subtype BC (4.9%), M-09-CPX (4.9) and BF1 (2.4%). Of 41 genotyped subjects, 85.4% (35/41) had at least one ADR mutation. Eighty-one percent (33/41) of viraemic patients harbored NRTI resistance mutations, and 48.8% (20/41) were positive for NNRTI resistance mutations, with 43.9% dual resistance mutations. Among NRTI resistance mutations, M184V (73.2%), K219Q (63.4%) and T215 (56.1%) complex were the most mutated positions, while the most common NNRTI resistance mutations were K103N (24.4%), K101E, P225H and V108I 7.5% each. Active tuberculosis (aOR=13, 95% CI= 3.46-29.69), immunological failure (aOR=3.61, 95% CI=1.26-10.39), opportunistic infections (aOR=8.39, 95% CI= 1.75-40.19), and poor adherence were significantly associated with virological failure, while rural residence (aOR 2.37; 95% CI: 1.62-9.10, P= 0.05), immunological failures (aOR 2.37; 95% CI: 1.62-9.10, P= 0.05) and high viral load (aOR 16; 95% CI: 5.35 51.59, P <0.001) were predictors of ADR mutation among the ART experienced and viraemic study subjects. CONCLUSION: The study revealed considerable prevalence of VF and ADR mutation with the associated risk indicators. Regular virological monitoring and drug resistance genotyping methods should be implemented for better ART treatment outcomes of the nation.

3.
Front Med (Lausanne) ; 8: 667462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249966

RESUMO

Biofilms composed of multiple microorganisms colonize the surfaces of indwelling urethral catheters that are used serially by neurogenic bladder patients and cause chronic infections. Well-adapted pathogens in this niche are Escherichia coli, Proteus, and Enterococcus spp., species that cycle through adhesion and multilayered cell growth, trigger host immune responses, are starved off nutrients, and then disperse. Viable microbial foci retained in the urinary tract recolonize catheter surfaces. The molecular adaptations of bacteria in catheter biofilms (CBs) are not well-understood, promising new insights into this pathology based on host and microbial meta-omics analyses from clinical specimens. We examined catheters from nine neurogenic bladder patients longitudinally over up to 6 months. Taxonomic analyses from 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics revealed that 95% of all catheter and corresponding urinary pellet (UP) samples contained bacteria. CB biomasses were dominated by Enterobacteriaceae spp. and often accompanied by lactic acid and anaerobic bacteria. Systemic antibiotic drug treatments of patients resulted in either transient or lasting microbial community perturbations. Neutrophil effector proteins were abundant not only in UP but also CB samples, indicating their penetration of biofilm surfaces. In the context of one patient who advanced to a kidney infection, Proteus mirabilis proteomic data suggested a combination of factors associated with this disease complication: CB biomasses were high; the bacteria produced urease alkalinizing the pH and triggering urinary salt deposition on luminal catheter surfaces; P. mirabilis utilized energy-producing respiratory systems more than in CBs from other patients. The NADH:quinone oxidoreductase II (Nqr), a Na+ translocating enzyme not operating as a proton pump, and the nitrate reductase A (Nar) equipped the pathogen with electron transport chains promoting growth under hypoxic conditions. Both P. mirabilis and E. coli featured repertoires of transition metal ion acquisition systems in response to human host-mediated iron and zinc sequestration. We discovered a new drug target, the Nqr respiratory system, whose deactivation may compromise P. mirabilis growth in a basic pH milieu. Animal models would not allow such molecular-level insights into polymicrobial biofilm metabolism and interactions because the complexity cannot be replicated.

4.
Front Cell Infect Microbiol ; 11: 595554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150670

RESUMO

Differential diagnosis of tuberculosis (TB) and latent TB infection (LTBI) remains a public health priority in high TB burden countries. Pulmonary TB is diagnosed by sputum smear microscopy, chest X-rays, and PCR tests for distinct Mycobacterium tuberculosis (Mtb) genes. Clinical tests to diagnose LTBI rely on immune cell stimulation in blood plasma with TB-specific antigens followed by measurements of interferon-γ concentrations. The latter is an important cytokine for cellular immune responses against Mtb in infected lung tissues. Sputum smear microscopy and chest X-rays are not sufficiently sensitive while both PCR and interferon-γ release assays are expensive. Alternative biomarkers for the development of diagnostic tests to discern TB disease states are desirable. This study's objective was to discover sputum diagnostic biomarker candidates from the analysis of samples from 161 human subjects including TB patients, individuals with LTBI, negative community controls (NCC) from the province South Omo, a pastoral region in Ethiopia. We analyzed 16S rRNA gene-based bacterial taxonomies and proteomic profiles. The sputum microbiota did not reveal statistically significant differences in α-diversity comparing the cohorts. The genus Mycobacterium, representing Mtb, was only identified for the TB group which also featured reduced abundance of the genus Rothia in comparison with the LTBI and NCC groups. Rothia is a respiratory tract commensal and may be sensitive to the inflammatory milieu generated by infection with Mtb. Proteomic data supported innate immune responses against the pathogen in subjects with pulmonary TB. Ferritin, an iron storage protein released by damaged host cells, was markedly increased in abundance in TB sputum compared to the LTBI and NCC groups, along with the α-1-acid glycoproteins ORM1 and ORM2. These proteins are acute phase reactants and inhibit excessive neutrophil activation. Proteomic data highlight the effector roles of neutrophils in the anti-Mtb response which was not observed for LTBI cases. Less abundant in the sputum of the LTBI group, compared to the NCC group, were two immunomodulatory proteins, mitochondrial TSPO and the extracellular ribonuclease T2. If validated, these proteins are of interest as new biomarkers for diagnosis of LTBI.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Biomarcadores , Etiópia/epidemiologia , Humanos , Tuberculose Latente/diagnóstico , Mycobacterium tuberculosis/genética , Proteômica , RNA Ribossômico 16S/genética , Receptores de GABA , Escarro
5.
Geroscience ; 43(2): 593-606, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32974878

RESUMO

Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.


Assuntos
Envelhecimento Saudável , Interleucina-12 , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Humanos , Plasma , Transdução de Sinais
6.
Proteome Sci ; 18(1): 10, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33292280

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the world's most problematic infectious diseases. The pathogen Mycobacterium tuberculosis (Mtb) is contained by the immune system in people with latent TB infection (LTBI). No overt disease symptoms occur. The environmental and internal triggers leading to reactivation of TB are not well understood. Non-tuberculosis Mycobacteria (NTM) can also cause TB-like lung disease. Comparative analysis of blood plasma proteomes from subjects afflicted by these pathologies in an endemic setting may yield new differentiating biomarkers and insights into inflammatory and immunological responses to Mtb and NTM. METHODS: Blood samples from 40 human subjects in a pastoral region of Ethiopia were treated with the ESAT-6/CFP-10 antigen cocktail to stimulate anti-Mtb and anti-NTM immune responses. In addition to those of active TB, LTBI, and NTM cohorts, samples from matched healthy control (HC) subjects were available. Following the generation of sample pools, proteomes were analyzed via LC-MS/MS. These experiments were also performed without antigen stimulation steps. Statistically significant differences using the Z-score method were determined and interpreted in the context of the proteins' functions and their contributions to biological pathways. RESULTS: More than 200 proteins were identified from unstimulated and stimulated plasma samples (UPSs and SPSs, respectively). Thirty-four and 64 proteins were differentially abundant with statistical significance (P < 0.05; Benjamini-Hochberg correction with an FDR < 0.05) comparing UPS and SPS proteomic data of four groups, respectively. Bioinformatics analysis of such proteins via the Gene Ontology Resource was indicative of changes in cellular and metabolic processes, responses to stimuli, and biological regulations. The m7GpppN-mRNA hydrolase was increased in abundance in the LTBI group compared to HC subjects. Charged multivesicular body protein 4a and platelet factor-4 were increased in abundance in NTM as compared to HC and decreased in abundance in NTM as compared to active TB. C-reactive protein, α-1-acid glycoprotein 1, sialic acid-binding Ig-like lectin 16, and vitamin K-dependent protein S were also increased (P < 0.05; fold changes≥2) in SPSs and UPSs comparing active TB with LTBI and NTM cases. These three proteins, connected in a STRING functional network, contribute to the acute phase response and influence blood coagulation. CONCLUSION: Plasma proteomes are different comparing LTBI, TB, NTM and HC cohorts. The changes are augmented following prior blood immune cell stimulation with the ESAT-6/CFP-10 antigen cocktail. The results encourage larger-cohort studies to identify specific biomarkers to diagnose NTM infection, LTBI, and to predict the risk of TB reactivation.

7.
BMC Infect Dis ; 20(1): 750, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33050903

RESUMO

BACKGROUND: Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC). Mapping the genetic diversity of MTBC in high TB burden country like Ethiopia is important to understand principles of the disease transmission and to strengthen the regional TB control program. The aim of this study was to investigate the genetic diversity of Mycobacterium tuberculosis complex (MTBC) isolates circulating in the South Omo, southern Ethiopia. METHODS: MTBC isolates (N = 156) were genetically analyzed using spacer oligotyping (spoligotyping) and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing. Major lineages and lineages were identified using MTBC databases. Logistic regression was used to correlate patient characteristics with strain clustering. RESULTS: The study identified Euro-American (EA), East-African-Indian (EAI), Indo-Oceanic (IO), Lineage_7/Aethiops vertus, Mycobacterium bovis and Mycobacterium africanum major lineages in proportions of 67.3% (105/156), 22.4% (35/156), 6.4% (10/156), 1.9% (3/156), 1.3% (2/156) and 0.6% (1/156), respectively. Lineages identified were Delhi/CAS 23.9% (37/155), Ethiopia_2 20.6% (32/155), Haarlem 14.2% (22/155), URAL 14.2%(22/155), Ethiopia_3 8.4% (13/155), TUR 6.5% (10/155), Lineage_7/Aethiops vertus 1.9% (3/155), Bovis 1.3% (2/155), LAM 1.3% (2/155), EAI 0.6% (1/155), X 0.6% (1/155) and Ethiopia H37Rv-like strain 0.6% (1/155). Of the genotyped isolates 5.8% (9/155) remained unassigned. The recent transmission index (RTI) was 3.9%. Orphan strains compared to shared types (AOR: 0.09, 95% CI: 0.04-0.25) were associated with reduced odds of clustering. The dominant TB lineage in pastoral areas was EAI and in non-pastoral areas was EA. CONCLUSION: The epidemiological data, highly diverse MTBC strains and a low RTI in South Omo, provide information contributing to the TB Control Program of the country.


Assuntos
Variação Genética , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Etiópia/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites/genética , Epidemiologia Molecular , Reação em Cadeia da Polimerase Multiplex , Mycobacterium bovis/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
8.
Microorganisms ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899353

RESUMO

The leptin receptor-deficient db/db mouse model is an accepted in vivo model to study obesity, type 2 diabetes, and diabetic kidney disease. Healthy gastrointestinal (GI) microbiota has been linked to weight loss, improved glycemic control, and physiological benefits. We investigated the effect of various drugs on the GI microbiota of db/db mice as compared to control db/m mice. Treatment with long-acting pirfenidone (PFD) increased gut microbial diversity in diabetic db/db mice. Firmicutes, the most abundant phylum in db/m mice, decreased significantly in abundance in db/db mice but showed increased abundance with long-acting PFD treatment. Several bacterial taxa, including Lactobacillus and some Bacteroides, were less abundant in db/db mice and more abundant in long-acting-PFD-treated db/db mice. Long-acting PFD treatment reduced the abundance of Akkermansia muciniphila (5%) as compared to db/db mice (~15%). We conclude that gut microbial dysbiosis observed in db/db mice was partially reversed by long-acting PFD treatment and hypothesize that PFD has beneficial effects, in part, via its influence on the gut microbial metabolite profile. In quantitatively assessing urine metabolites, we observed a high abundance of diabetic ketoacidosis biomarkers, including 3-hydroxybutyric acid and acetoacetic acid in db/db mice, which were less abundant in the long-acting-PFD-treated db/db mice.

9.
Microb Ecol ; 79(4): 1034-1043, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31754744

RESUMO

Prophylactic or therapeutic antibiotic use along with chemotherapy treatment potentially has a long-standing adverse effect on the resident gut microbiota. We have established a case-control cohort of 32 pediatric and adolescent acute lymphoblastic leukemia (ALL) patients and 25 healthy siblings (sibling controls) to assess the effect of chemotherapy as well as antibiotic prophylaxis on the gut microbiota. We observe that the microbiota diversity and richness of the ALL group is significantly lower than that of the control group at diagnosis and during chemotherapy. The microbiota diversity is even lower in antibiotics-exposed ALL patients. Although the gut microbial diversity tends to stabilize after 1-year post-chemotherapy, their abundances were altered because of chemotherapy and prophylactic antibiotic treatments. Specifically, the abundances of mucolytic gram-positive anaerobic bacteria, including Ruminococcus gnavus and Ruminococcus torques, tended to increase during the chemotherapy regimen and continued to be elevated 1 year beyond the initiation of chemotherapy. This dysbiosis may contribute to the development of gastrointestinal complications in ALL children following chemotherapy. These findings set the stage to further understand the role of the gut microbiome dynamics in ALL patients and their potential role in alleviating some of the adverse side effects of chemotherapy and antibiotics use in immunocompromised children.


Assuntos
Antibacterianos/administração & dosagem , Antineoplásicos/administração & dosagem , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Disbiose/induzido quimicamente , Feminino , Humanos , Lactente , Masculino
10.
Geroscience ; 41(6): 907-921, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31620923

RESUMO

The human oral and gut microbiomes influence health via competition for a distinct niche in the body with pathogens, via metabolic capabilities that increase host digestive capacity and generate compounds engaged in signaling pathways and modulation of immune system functions. Old age alters our metabolic and regenerative capacity. Following recruitment of 65 human subjects in the age range of 70 to 82, we discerned healthy aging (HA) and non-healthy aging (NHA) cohorts discordant in the occurrence of one or more major diseases: (1) cancer, (2) acute or chronic cardiovascular diseases, (3) acute or chronic pulmonary diseases, (4) diabetes, and (5) stroke or neurodegenerative disorders. We analyzed these cohorts' oral microbiomes (saliva) and gut microbiomes (stool) to assess diversity and identify microbial biomarkers for HA. In contrast to the gut microbiome where no change was observed, we found that the saliva microbiome had higher α-diversity in the HA compared with the NHA group. We observed the genus Akkermansia to be significantly more abundant in the gut microbiota of the HA group. Akkermansia muciniphila is a colonic mucin-degrading bacterium believed to have beneficial effects on gastrointestinal health, particularly in the context of diabetes and obesity. Erysipelotrichaceae UCG-003 was a taxon increased in abundance in the HA cohort. Streptococcus was the only genus observed to be significantly decreased in abundance in both the gut and oral microbiomes of the HA cohort compared with the NHA cohort. Our data support the notion that these microbes are potential probiotics to decrease the risks of non-healthy aging.


Assuntos
Microbioma Gastrointestinal/fisiologia , Envelhecimento Saudável/fisiologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Estudos Prospectivos , Saliva/microbiologia
11.
Biochem Insights ; 12: 1178626419875089, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555049

RESUMO

Aerococcus urinae (Au) and Globicatella sanguinis (Gs) are gram-positive bacteria belonging to the family Aerococcaceae and colonize the human immunocompromised and catheterized urinary tract. We identified both pathogens in polymicrobial urethral catheter biofilms (CBs) with a combination of 16S rDNA sequencing, proteomic analyses, and microbial cultures. Longitudinal sampling of biofilms from serially replaced catheters revealed that each species persisted in the urinary tract of a patient in cohabitation with 1 or more gram-negative uropathogens. The Gs and Au proteomes revealed active glycolytic, heterolactic fermentation, and peptide catabolic energy metabolism pathways in an anaerobic milieu. A few phosphotransferase system (PTS)-based sugar uptake and oligopeptide ABC transport systems were highly expressed, indicating adaptations to the supply of nutrients in urine and from exfoliating squamous epithelial and urothelial cells. Differences in the Au vs Gs metabolisms pertained to citrate lyase and utilization and storage of glycogen (evident only in Gs proteomes) and to the enzyme Xfp that degrades d-xylulose-5'-phosphate and the biosynthetic pathways for 2 protein cofactors, pyridoxal 6'-phosphate and 4'-phosphopantothenate (expressed only in Au proteomes). A predicted ZnuA-like transition metal ion uptake system was identified for Gs while Au expressed 2 LPXTG-anchored surface proteins, one of which had a predicted pilin D adhesion motif. While these proteins may contribute to fitness and virulence in the human host, it cannot be ruled out that Au and Gs fill a niche in polymicrobial biofilms without being the direct cause of injury in urothelial tissues.

12.
Methods Mol Biol ; 2021: 241-257, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309510

RESUMO

Neutrophils are important mediators of the antimicrobial defense during urinary tract infections (UTIs). When activated at the site of infection, these innate immune cells phagocytose and neutralize an invading pathogen. Another neutrophil defense strategy is the release of effectors, such as antimicrobial peptides and proteins stored in neutrophil granules and reactive oxygen species. Their release can be facilitated by cellular signals that trigger chromatic decondensation and the disruption of nuclear membranes, followed by granule and plasma membrane disintegration, DNA release into the extracellular milieu, and neutrophil cell death. Neutrophil extracellular traps (NETs) form. If microbial pathogens are the cause of neutrophil infiltration, they are entrapped in the network of DNA fibers that characterize NETs and are exposed to antimicrobial granule effectors and histones that bind to the extracellular DNA fibers. Here, we describe nonmicroscopic methods applied to clinical (urine sediment) samples to identify and characterize NETs associated with UTI. A stepwise extraction procedure using PBS, deoxyribonuclease I digestion and SDS-based solubilization is described. This is followed by native gel analysis to visualize protein-DNA macromolecular assemblies and proteomic analysis to identify signature proteins and their quantities in NETs. Microbes observed to be entrapped in NETs in the process of the innate immune response to the infection are Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, and Enterococcus faecalis.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , Proteômica/métodos , Infecções Urinárias/imunologia , Urina/química , Humanos , Imunidade Inata , Infiltração de Neutrófilos
13.
Methods Mol Biol ; 2021: 259-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31309511

RESUMO

Urinary tract infections (UTIs) are one of the most common bacterial infections. Conventional approaches to diagnose these infections rely on microbial urine culture, urine sediment microscopy and basic molecular urinalysis tests, in combination with assessments of patient symptoms that are indicative of UTI. The last decade has seen a more widespread clinical use of standardized MALDI-TOF methods to identify UTI-causing microbial agents. Shotgun proteomics methods to determine the extent of inflammation and types of immune cell effectors in urine have not become part of routine clinical tests. However, such methods are useful to investigate UTI pathogenesis, identify difficult-to-culture pathogens and understand antimicrobial effector mechanisms. The present chapter describes these approaches in order to gain quantitative and qualitative insights into inflammation and immune responses in patients with UTI and simultaneously profile the causative agents. The methods are also applicable to examine catheter-associated UTIs and vaginal infections from urine samples. Protocols provided here pertain to direct analyses of clinical specimens including urine sediments and urethral catheter biofilms.


Assuntos
Infecções Relacionadas a Cateter/imunologia , Proteômica/métodos , Infecções Urinárias/imunologia , Infecções Relacionadas a Cateter/urina , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Urinálise , Infecções Urinárias/urina
14.
Proteomes ; 6(4)2018 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-30544882

RESUMO

Actinobaculum massiliense, a Gram-positive anaerobic coccoid rod colonizing the human urinary tract, belongs to the taxonomic class of Actinobacteria. We identified A. massiliense as a cohabitant of urethral catheter biofilms (CB). The CBs also harbored more common uropathogens, such as Proteus mirabilis and Aerococcus urinae, supporting the notion that A. massiliense is adapted to a life style in polymicrobial biofilms. We isolated a clinical strain from a blood agar colony and used 16S rRNA gene sequencing and shotgun proteomics to confirm its identity as A. massiliense. We characterized this species by quantitatively comparing the bacterial proteome derived from in vitro growth with that of four clinical samples. The functional relevance of proteins with emphasis on nutrient import and the response to hostile host conditions, showing evidence of neutrophil infiltration, was analyzed. Two putative subtilisin-like proteases and a heme/oligopeptide transporter were abundant in vivo and are likely important for survival and fitness in the biofilm. Proteins facilitating uptake of xylose/glucuronate and oligopeptides, also highly expressed in vivo, may feed metabolites into mixed acid fermentation and peptidolysis pathways, respectively, to generate energy. A polyketide synthase predicted to generate a secondary metabolite that interacts with either the human host or co-colonizing microbes was also identified. The product of the PKS enzyme may contribute to A. massiliense fitness and persistence in the CBs.

15.
Infect Drug Resist ; 11: 1581-1589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288068

RESUMO

BACKGROUND: Knowledge of drug-sensitivity patterns of Mycobacterium tuberculosis complex (MTBC) strains isolated from patients is an important aspect of TB control strategy. This study was conducted to evaluate the drug sensitivity of MTBC isolates in South Omo, southern Ethiopia. MATERIALS AND METHODS: A total of 161 MTBC isolates (153 from new cases and eight re-treatment TB cases) were isolated using Lowenstein Jensen medium of which 126 isolates were able to be tested for drug sensitivity by BACTEC™MGIT™ 960 system, while all the 161 isolates were tested by GenoType® MTBDRplus VER 2.0. Descriptive statistics and logistic regression were used to express and present results. RESULTS: On the basis of MGIT 960 system, the prevalence of mono-resistance was 9.2% (11/119) in the new cases, although neither poly-resistance nor multidrug resistance (MDR) was recorded in these cases. On the basis of GenoType MTBDRplus assay, two of the 153 isolates (1.3%) of the new cases were mono-resistant for rifampicin (RIF) and one of these isolates had known rpoB gene mutation (H526D). One of the eight (12.5%) isolates obtained from the re-treatment cases was MDR with rpoB gene mutation (D516V) and katG gene mutation (S315T2). Taking MGIT 960 system as a gold standard, the sensitivities of the MTBDRplus assay were 33.3%, 100% and 100% for detection of resistance to isoniazid, RIF and MDR, respectively. On the other hand, its specificities were 99.2%, 100% and 100% for detection of resistance to RIF, isoniazid and MDR, respectively. CONCLUSION: The magnitude of drug resistance was relatively low in the new TB cases of South Omo as compared to the reports from the other regions of the country. This is encouraging and hence the TB Control Program in the Zone should strengthen its program so that the emergence of drug resistance is inhibited.

16.
Cell Syst ; 7(4): 463-467.e6, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30268435

RESUMO

Shotgun metaproteomics has the potential to reveal the functional landscape of microbial communities but lacks appropriate methods for complex samples with unknown compositions. In the absence of prior taxonomic information, tandem mass spectra would be searched against large pan-microbial databases, which requires heavy computational workload and reduces sensitivity. We present ProteoStorm, an efficient database search framework for large-scale metaproteomics studies, which identifies high-confidence peptide-spectrum matches (PSMs) while achieving a two-to-three orders-of-magnitude speedup over popular tools. A reanalysis of a urinary tract infection (UTI) dataset of 110 individuals revealed a complex pattern of polymicrobial expression, including sub-types of UTIs, cases of bacterial vaginosis, and evidence of no underlying disease. Importantly, compared to the initial UTI study that restricted the search database to a manually curated list of 20 genera, ProteoStorm identified additional genera that were previously unreported, including a case of infection with the rare pathogen Propionimicrobium.


Assuntos
Metagenoma , Proteômica/métodos , Software , Bases de Dados Genéticas , Humanos , Microbiota/genética , Proteômica/normas , Infecções Urinárias/microbiologia
17.
J Proteome Res ; 17(9): 2917-2924, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30114372

RESUMO

The success of shotgun proteomic analysis depends largely on how samples are prepared. Current approaches (such as those that are gel-, solution-, or filter-based), although being extensively employed in the field, are time-consuming and less effective with respect to the repetitive sample processing, recovery, and overall yield. As an alternative, the suspension trapping (S-Trap) filter has been commercially available very recently in the format of a single or 96-well filter plate. In contrast to the conventional filter-aided sample preparation (FASP) approach, which utilizes a molecular weight cut-off (MWCO) membrane as the filter and requires hours of processing before digestion-ready proteins can be obtained, the S-Trap employs a three-dimensional porous material as filter media and traps particulate protein suspensions with the subsequent depletion of interfering substances and in-filter digestion. Due to the large (submicron) pore size, each centrifugation cycle of the S-Trap filter only takes 1 min, which significantly reduces the total processing time from approximately 3 h by FASP to less than 15 min, suggesting an ultrafast sample-preparation approach for shotgun proteomics. Here, we comprehensively evaluate the performance of the individual S-Trap filter and 96-well filter plate in the context of global protein identification and quantitation using whole-cell lysate and clinically relevant sputum samples.


Assuntos
Filtração/métodos , Klebsiella pneumoniae/química , Proteômica/métodos , Manejo de Espécimes/métodos , Escarro/química , Tuberculose Pulmonar/metabolismo , Proteínas de Bactérias , Centrifugação/instrumentação , Centrifugação/métodos , Cromatografia Líquida/instrumentação , Etiópia , Filtração/instrumentação , Interações Hospedeiro-Patógeno , Humanos , Membranas Artificiais , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Proteólise , Proteômica/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Tuberculose Pulmonar/microbiologia
18.
Sci Rep ; 8(1): 4333, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531289

RESUMO

Urine culture and microscopy techniques are used to profile the bacterial species present in urinary tract infections. To gain insight into the urinary flora, we analyzed clinical laboratory features and the microbial metagenome of 121 clean-catch urine samples. 16S rDNA gene signatures were successfully obtained for 116 participants, while metagenome sequencing data was successfully generated for samples from 49 participants. Although 16S rDNA sequencing was more sensitive, metagenome sequencing allowed for a more comprehensive and unbiased representation of the microbial flora, including eukarya and viral pathogens, and of bacterial virulence factors. Urine samples positive by metagenome sequencing contained a plethora of bacterial (median 41 genera/sample), eukarya (median 2 species/sample) and viral sequences (median 3 viruses/sample). Genomic analyses suggested cases of infection with potential pathogens that are often missed during routine urine culture due to species specific growth requirements. While conventional microbiological methods are inadequate to identify a large diversity of microbial species that are present in urine, genomic approaches appear to more comprehensively and quantitatively describe the urinary microbiome.


Assuntos
Bactérias/classificação , Eucariotos/classificação , Metagenoma , Infecções Urinárias/microbiologia , Infecções Urinárias/virologia , Vírus/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Ribossômico/genética , Eucariotos/genética , Eucariotos/isolamento & purificação , Feminino , Humanos , Masculino , Filogenia , Análise de Sequência de DNA , Infecções Urinárias/parasitologia , Infecções Urinárias/urina , Vírus/genética , Vírus/isolamento & purificação
19.
BMC Public Health ; 18(1): 266, 2018 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454325

RESUMO

BACKGROUND: Research pertaining to the community-based prevalence of latent tuberculosis infection (LTBI) is important to understand the magnitude of this infection. This study was conducted to estimate LTBI prevalence and to identify associated risk factors in the Omo Zone of Southern Ethiopia. METHODS: A community-based cross-sectional study was conducted in six South Omo districts from May 2015 to February 2016. The sample size was allocated to the study districts proportional to their population sizes. Participants were selected using a multi-stage sampling approach. A total of 497 adult pastoralists were recruited. Blood samples were collected from the study participants and screened for LTBI using a U.S. Food and Drug Administration approved interferon-gamma release assay (IGRA). Logistic regression was used to model the likelihood of LTBI occurrence and to identify risk factors associated with LTBI. RESULTS: The prevalence of LTBI was 50.5% (95% CI: 46%, 55%) with no significant gender difference (49.8% among males versus 51.2% among females; Chi-square (χ2) = 0.10; P = 0.41) and marginally non-significant increasing trends with age (44.6% among those below 24 years and 59.7% in the age range of 45-64 years; χ2 = 6.91; P = 0.075). Being residence of the Dasanech District (adjusted odds ratio, AOR = 2.62, 95% CI: 1.30, 5.28; P = 0.007) and having a habit of eating raw meat (AOR = 2.89, 95% CI: 1.09, 7.66; P = 0.033) were significantly associated with an increased odds of being positive for LTBI. A large family size (size of 5 to 10) has significant protective effect against associated a reduced odds of being positive for LTBI compared to a family size of below 5 (AOR = 0.65, 95% CI: 0.42, 0.99; P = 0.045). CONCLUSIONS: A high prevalence of LTBI in the South Omo Zone raises the concern that elimination of TB in the pastoral communities of the region might be difficult. Screening for and testing individuals infected with TB, independent of symptoms, may be an effective way to minimize the risk of disease spread.


Assuntos
Tuberculose Latente/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criação de Animais Domésticos , Estudos Transversais , Etiópia/epidemiologia , Características da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Adulto Jovem
20.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311240

RESUMO

Accurate diagnosis and early treatment of tuberculosis (TB) and latent TB infection (LTBI) are vital to prevent and control TB. The lack of specific biomarkers hinders these efforts. This study's purpose was to screen immunological markers that discriminate Mycobacterium tuberculosis infection outcomes in a setting where it is endemic, Ethiopia. Whole blood from 90 participants was stimulated using the ESAT-6/CFP-10 antigen cocktail. The interferon gamma (IFN-γ)-based QuantiFERON diagnostic test was used to distinguish between LTBI and uninfected control cases. Forty cytokines/chemokines were detected from antigen-stimulated plasma supernatants (SPSs) and unstimulated plasma samples (UPSs) using human cytokine/chemokine antibody microarrays. Statistical tests allowed us to identify potential biomarkers that distinguish the TB, LTBI, and healthy control groups. As expected, the levels of IFN-γ in SPSs returned a high area under the receiver operating characteristic curve (AUC) value comparing healthy controls and LTBI cases (Z = 0.911; P < 0.001). The SPS data also indicated that interleukin 17 (IL-17) abundance discriminates LTBI from healthy controls (Z = 0.763; P = 0.001). RANTES and MIP-1ß were significantly elevated in SPSs of TB-infected compared to healthy controls (P < 0.05), while IL-12p40 and soluble tumor necrosis factor receptor II (sTNF-RII) were significantly increased in active TB cases compared to the combined LTBI and control groups (P < 0.05). Interestingly, quantitative changes for RANTES were observed using both SPSs and UPSs, with P values of 0.013 and 0.012, respectively, in active TB versus LTBI cases and 0.001 and 0.002, respectively, in active TB versus healthy controls. These results encourage biomarker verification studies for IL-17 and RANTES. Combinations of these cytokines may complement IFN-γ measurements to diagnose LTBI and distinguish active TB from LTBI cases.


Assuntos
Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto , Biomarcadores , Estudos de Casos e Controles , Citocinas/sangue , Citocinas/metabolismo , Etiópia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Tuberculose/epidemiologia , Tuberculose/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...