Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 132(13): 4586-8, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20232864

RESUMO

Spontaneous ejection of chloride from a three-coordinate boron Lewis acid can be effected by employing very electron rich metal substituents and leads to the formation of a sterically unprotected terminal (dimethylamino)borylene complex that has a short metal-boron bond and remarkable resistance to attack by nucleophilic and protic reagents.

2.
Chem Commun (Camb) ; (10): 1157-71, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19240867

RESUMO

In the ten years since the first examples of terminal borylene complexes were reported, rapid advances in the chemistry of this ligand class have been made, and parallels emerged with classical organometallic ligand systems (such as carbenes, vinylidenes and even CO) as well as with other subvalent main group ligand systems. This article reviews key developments in synthetic, structural and reaction chemistry, with particular attention focusing on recent discoveries in the field.

3.
Dalton Trans ; (39): 4405-12, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17909652

RESUMO

Insertion reactions of dicyclohexylcarbodiimide with aminoboranes and with aminoboryl and -borylene transition metal complexes have been examined as potential routes to new boron-containing ligand systems. Reactions with systems containing two-coordinate boron centres are found to be significantly more facile than those with three-coordinate substrates. Thus, reaction of (dicyclohexylamino)boron dichloride () with dicyclohexylcarbodiimide over 36 h at 50 degrees C generates the (structurally authenticated) guanidinate complex Cy(2)NC(NCy)(2)BCl(2) () via insertion into the BN bond. By contrast, the corresponding reaction with the cationic aminoborylene complex [CpFe(CO)(2)(BNCy(2))](+)[BAr(f)(4)](-) () proceeds rapidly at ca.-30 degrees C, via initial insertion into the FeB bond to give [CpFe(CO)(2)C(NCy)(2)BNCy(2)](+)[BAr(f)(4)](-) (). Consistent with related studies, a key factor in facilitating such insertion chemistry is thought to be the formation of an initial donor/acceptor complex between the diimide and the group 13 centre. Thus, DFT studies suggest that [CpFe(CO)(2)B(NCy(2))(CyNCNCy)](+)[BAr(f)(4)](-) is a potential intermediate in the reaction of with CyNCNCy, and that further reaction to give the observed product, , is strongly exergic (-183 kJ mol(-1)). By contrast, DFT calculations for the alternative isomer [CpFe(CO)(2)B(CyN)(2)CNCy(2)](+)[BAr(f)(4)](-) (), formed by BN insertion, suggest that it is 112 kJ mol(-1) less stable than . Such experimental and computational findings imply that under reaction conditions where a suitable isomerisation pathway is available, cationic complexes such as , which contain a four-membered boron-donor heterocycle are likely to be disfavoured with respect to alternative C-bound isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...